Bayesian Statistics for Genetics
Lecture 1: Introduction

Ken Rice

UW Dept of Biostatistics

July, 2016
Overview

Just the key points from a large subject...

- What is Bayes’ Rule, a.k.a. Bayes’ Theorem?
- What is Bayesian inference?
- Where can Bayesian inference be helpful?
- How does it differ from frequentist inference?

Note: other literature contains many pro- and anti-Bayesian polemics, many of which are ill-informed and unhelpful. We will try not to rant, and aim to be accurate.

Further Note: There will, unavoidably, be some discussion of epistemology, i.e. philosophy concerned with the nature and scope of knowledge. But...
Overview

Using a spade for some jobs and shovel for others does not require you to sign up to a lifetime of using only Spadian or Shovelist philosophy, or to believing that only spades or only shovels represent the One True Path to garden neatness.

There are different ways of tackling statistical problems, too.
Bayes’ Theorem

Before we get to Bayesian statistics, Bayes’ *Theorem* is a result from *probability*. Probability is familiar to most people through games of chance;
Bayes’ Theorem

We’ll see more formal details in Lecture 2, but for now think of probability as proportion. The probability of an event (denoted \(P[\text{Event}]\)) is the proportion of outcomes where that event occurs, among all equally-likely possible outcomes.

<table>
<thead>
<tr>
<th>Situation</th>
<th>Possible events</th>
<th>Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads, Tails</td>
<td>(P[\text{Heads}]) = (1/2 = 0.5) (P[\text{Tails}]) = (1/2 = 0.5)</td>
<td></td>
</tr>
<tr>
<td>e.g. 1,2,...,6</td>
<td>(P[\text{Throw 1}]) = (1/6 \approx 0.17) (P[\text{Throw 2}]) = (1/6 \approx 0.17) (P[\text{Throw < 5}]) = (4/6 = 2/3 \approx 0.67)</td>
<td></td>
</tr>
</tbody>
</table>
Bayes’ Theorem

These ideas occur naturally in genetics;

‘Mendelian inheritance’ means that, at conception, a biological coin toss determines which parental alleles are passed on.
Bayes’ Theorem

These ideas occur naturally in genetics;

The probability of being ‘identical by descent’ at any locus depends on the pedigree’s genotypes, and structure.
Bayes’ Theorem

With two events (e.g. acquiring a somatic mutation and developing cancer) we can consider the probability that

- They both happen; $P[A \cap B]$, where $A \cap B$ is the intersection of events A and B. (Also written $A \& B$, A AND B)
- At least one of them happens; $P[A \cup B]$, where $A \cup B$ is the union of events A and B. (Also written A OR B)

Q. Throwing 2 dice, what are;

$P[\text{White } 5 \cap \text{Black } 3]$?
$P[5 \cap 3]$?
$P[1 \cup 3]$?
$P[\text{Total } 7 \cup \text{Total } 6]$?
Bayes’ Theorem

A more subtle concept; what's the probability of one event given that another has occurred? The probability of event A given that B has occurred is the conditional probability of A given B, denoted $\mathbb{P}[A|B]$.

![Dice Image]

Throwing 2 dice and conditioning (blue) on the total being 7;

\[
\mathbb{P}[\text{White 5} \mid \text{Total 7}] = \frac{1}{6} \approx 0.17
\]
\[
\mathbb{P}[\text{See 3} \mid \text{Total 7}] = \frac{2}{6} = \frac{1}{3} \approx 0.33
\]
Bayes’ Theorem

Genetics again! Jon* has two children. **Given that** at least one is a boy; what’s the probability he has two boys?

<table>
<thead>
<tr>
<th></th>
<th>Older Child</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Younger Child</td>
<td>Boy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Girl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unconditional\[\mathbb{P}[2 \text{ Boys}] = 1/4 = 0.25 \]

<table>
<thead>
<tr>
<th></th>
<th>Older Child</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Younger Child</td>
<td>Boy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Girl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditional\[\mathbb{P}[2 \text{ Boys}|1 \text{ Boy}] = 1/3 \approx 0.33 \]

*... a entirely randomly-chosen father of two with at least one boy
Bayes’ Theorem

Now a problem to show that conditional probability can be non-intuitive – NB this is not a ‘trick’ question;

Q. Jon has two children. **Given that** at least one is a **boy who was born on a Tuesday**; what’s the probability he has two boys?

- The ‘obvious’ (but wrong!) answer is to stick with 1/3. What can Tuesday possibly have to do with it?
- It may help your intuition, to note that a boy being born on a Tuesday is a (fairly) rare event;
 - Having two sons would give Jon two chances of experiencing this rare event
 - Having only one would give him one chance
 - ‘Conditioning’ means we know this event occurred, i.e. Jon was ‘lucky’ enough to have the event
- **Easier Q.** Is \(P[2 \text{ Boys} | 1 \text{ Tues Boy}] \) > 1/3? or < 1/3?
Bayes’ Theorem

All the possible births and sexes;

Q. When we condition, which row and column are we considering?
Bayes’ Theorem

Conditioning on at least one Tuesday-born boy;

...counting them up, $P[2 \text{ Boys} | 1 \text{ Tues Boy}] = \frac{13}{27} \approx 0.48$, quite different from $\frac{1}{3} \approx 0.33$.
Bayes’ Theorem

The standard way to illustrate events (or categories) that may overlap is a *Venn diagram*—here for events A and B;

- Total probabilities (areas) must add to one
- Each event has a *complement*, i.e. the event that it doesn’t happen. $\mathbb{P}[\text{not } A] = 1 - \mathbb{P}[A]$ (Also written $\mathbb{P}[A^C]$)
- More events = more shaded areas
Bayes’ Theorem

Venn diagrams used in genetics;

Orthologous gene families

SNPs in a single tumour’s genome vs genomes of Watson, Venter

NB event probabilities/set sizes may not be completely to scale—and this is okay.
Bayes’ Theorem

And some totally non-genetic examples, from XKCD;

Go to the original versions for hover-over text.
Bayes’ Theorem

Bayes’ *Theorem* (a.k.a Bayes *Rule*) is a result in conditional probability, stating that for two events \(A \) and \(B \)...

\[
P(A|B) = \frac{P(A \text{ and } B)}{P(B)} = P(B|A) \cdot \frac{P(A)}{P(B)}.
\]

In this example;
- \(P(A|B) = \frac{1/10}{3/10} = 1/3 \)
- \(P(B|A) = \frac{1/10}{5/10} = 1/5 \)
- And \(1/3 = 1/5 \times \frac{5/10}{3/10} \) (✓)

In words: the conditional probability of \(A \) given \(B \) is the conditional probability of \(B \) given \(A \) scaled by the *relative* probability of \(A \) compared to \(B \).
Bayes’ Theorem

Why does it matter? If 1% of a population have cancer, for a screening test with 80% sensitivity and 95% specificity;

\[
P[\text{Test +ve} | \text{Cancer}] = 80\%
\]
\[
P[\text{Test +ve}] = 5.75
\]
\[
P[\text{Cancer}] = 0.0575
\]
\[
P[\text{Cancer} | \text{Test +ve}] \approx 14\%
\]

... i.e. most positive results are actually false alarms

Mixing up \(P[A|B] \) with \(P[B|A] \) is the *Prosecutor’s Fallacy*; a small probability of evidence given innocence need NOT mean a small probability of innocence given evidence.
• After the sudden death of two baby sons, Sally Clark (above, center) was sentenced to life in prison in 1996
• Among other errors, expert witness Prof Roy Meadow (above right) had wrongly interpreted the small probability of two cot deaths as a small probability of Clark’s innocence
• After a long campaign, including refutation of Meadow’s statistics, Clark was released and cleared in 2003
• After being freed, she developed alcoholism and died in 2007
Bayes’ Theorem: XKCD at the beach

\[
P(I\text{’m near the ocean}|I\text{ picked up a seashell}) = \frac{P(I\text{ picked up}|I\text{’m near}) P(I\text{’m near})}{P(I\text{ picked up a seashell})}
\]

This is roughly equal to

\[
\frac{\text{# of times I’ve picked up a seashell at the ocean}}{\text{# of times I’ve picked up a seashell}}
\]

...which in my case is pretty close to 1, and gets much closer if we’re considering only times I didn’t put it to my ear.
Bayes’ Theorem

Another way to represent random events is by their distribution function, also known as a probability mass function;

Bar heights indicate the probability of each event; for ‘larger’ events (e.g. throwing $2 \cup 3$ on 2 dice) add together the bars.
Bayes’ Theorem

With *continuous* variables (e.g. height, weight, age, blood pressure) we have to represent *infinitely* many outcomes;

In a *density function*, we get the probability of certain sets (e.g. of a randomly-selected adult SBP >170mmHg or <110mmHg) by evaluating the corresponding *area*.
Bayes’ Theorem

More examples, from genetics;

Methylation levels

Heterozygostity (in dates)
Bayes’ Theorem

And one from XKCD;
Bayes’ Theorem

We usually denote the density at outcome \(y \) as \(p(y) \);

- The total probability of all possible outcomes is 1 - so densities integrate to one;

\[
\int_{\mathcal{Y}} p(y) dy = 1,
\]

where \(\mathcal{Y} \) denotes the set of all possible outcomes

- For any \(a < b \) in \(\mathcal{Y} \),

\[
\mathbb{P}[Y \in (a, b)] = \int_a^b p(y) dy
\]

- For general events;

\[
\mathbb{P}[Y \in \mathcal{Y}_0] = \int_{\mathcal{Y}_0} p(y) dy,
\]

where \(\mathcal{Y}_0 \) is some subset of the possible outcomes \(\mathcal{Y} \)
Bayes’ Theorem

For two random variables, the density is a surface;

\[
\int_{X,Y} p(x,y) \, dx \, dy = 1.
\]

... where the total ‘volume’ is 1, i.e. \(\int_{X,Y} p(x,y) \, dx \, dy = 1 \).
Bayes’ Theorem

To get the probability of outcomes in a region we again integrate;

\[
\begin{align*}
\mathbb{P} \left[100 < \text{SBP} < 140 \quad \& \quad \text{60} < \text{DBP} < 90 \right] & \approx 0.52 \\
\mathbb{P} \left[\text{SBP} > 140 \quad \text{OR} \quad \text{DBP} > 90 \right] & \approx 0.28
\end{align*}
\]
Bayes’ Theorem

For continuous variables (say systolic and diastolic blood pressure) think of conditional densities as ‘slices’ through the distribution;

Formally,

\[p(x|y = y_0) = \frac{p(x, y_0)}{\int_{\chi} p(x, y_0) \, dx} \]

\[p(y|x = x_0) = \frac{p(x_0, y)}{\int_{\gamma} p(x_0, y) \, dy}, \]

and we often write these as just \(p(x|y), \, p(y|x) \). Also, the marginal densities (shaded curves) are given by

\[p(x) = \int_{\gamma} p(x, y) \, dy \]

\[p(y) = \int_{\chi} p(x, y) \, dx. \]
Bayes’ Theorem

Bayes’ theorem also applies to continuous variables –

The conditional densities of the random variables are related this way;

\[p(x|y) = p(y|x) \frac{p(x)}{p(y)}. \]

Because we know \(p(x|y) \) must integrate to one, we can also write this as

\[p(x|y) \propto p(y|x)p(x). \]

The conditional density is proportional to the marginal scaled by the other conditional density.
Bayesian statistics

So far, nothing’s controversial; Bayes’ Theorem is a rule about the ‘language’ of probability, that can be used in any analysis describing random variables, i.e. any data analysis.

Q. So why all the fuss?
A. Bayesian statistics uses more than just Bayes’ Theorem

In addition to describing random variables, Bayesian statistics uses the ‘language’ of probability to describe what is known about unknown parameters.

Note: Frequentist statistics, e.g. using p-values & confidence intervals, does not quantify what is known about parameters.*

*many people initially think it does; an important job for instructors of intro Stat/Biostat courses is convincing those people that they are wrong.
Freq’ist inference (I know, shoot me!)

Frequentist inference, set all a-quiver;

CONSIDER AN ARCHER SHOOTING AT A TARGET. SUPPOSE SHE AIMS AT THE ‘BULLSEYE’ (A SINGLE POINT) AND HITS WITHIN 10CM OF IT 95% OF THE TIME.

Adapted from Gonick & Smith, *The Cartoon Guide to Statistics*
Freq’ist inference (I know, shoot me!)

Frequentist inference, set all a-quiver;

YOU ARE (BRAVELY!) SITTING BEHIND THE TARGET, AND YOU DON’T KNOW THE LOCATION OF THE BULLSEYE. THE ARCHER SHOOTS ONE ARROW...

KNOWING THE ARCHER’S SKILL, YOU DRAW A CIRCLE WITH 10CM RADIUS AROUND THE ARROW. YOU HAVE 95% CONFIDENCE THAT THIS CIRCLE INCLUDES THE BULLSEYE!

We ‘trap’ the truth with 95% confidence. Q. 95% of what?
Freq’ist inference (I know, shoot me!)

The interval traps the truth in 95% of experiments. To define anything frequentist, you *have to imagine* repeated experiments.
Freq’ist inference (I know, shoot me!)

The unknown ‘parameter’ in this example is the bullseye location. More generally, parameters quantify unknown population characteristics;

- Frequency of a particular SNP variant in that population
- Mean systolic BP in that population
- Mean systolic BP in that population, in those who have a particular SNP variant

Parameters are traditionally denoted as Greek letters (θ, β ... ξ) and we write \(p(y|\theta) \) to define the distribution of \(Y \) given a particular value of \(\theta \).

- Varying \(y \), \(p(y|\theta) \) tells how relatively likely different outcomes \(y \) are for fixed \(\theta \)
- Varying \(\theta \), \(p(y|\theta) \) (known as a likelihood) describes how relatively likely a given \(y \) is, at different \(\theta \)
Freq’ist inference (I know, shoot me!)

In almost all frequentist inference, confidence intervals take the form \(\hat{\theta} \pm 1.96 \times \text{stderr} \) where the *standard error* quantifies the ‘noise’ in some estimate \(\hat{\theta} \) of parameter \(\theta \).

(The 1.96 comes from \(\hat{\theta} \) following a Normal distribution, approximately — more later)
Freq’ist inference (I know, shoot me!)

Usually, we imagine running the ‘experiment’ again and again. Or, perhaps, make an argument like this;

On day 1 you collect data and construct a [valid] 95% confidence interval for a parameter θ_1. On day 2 you collect new data and construct a 95% confidence interval for an unrelated parameter θ_2. On day 3 … [the same]. You continue this way constructing confidence intervals for a sequence of unrelated parameters $\theta_1, \theta_2, \ldots$ 95% of your intervals will trap the true parameter value

Larry Wasserman, All of Statistics

This alternative interpretation is also valid, but…

- … neither version says anything about whether your data is in the 95% or the 5%
- … both versions require you to think about many other datasets, not just the one you have to analyze

How does Bayesian inference differ? Let’s take aim…
Bayesian inference

[Appalling archery pun goes here]

A FAMILIAR PROBLEM! BUT NOW, WE’LL USE OUR KNOWLEDGE OF BULLSEYE LOCATIONS IN BAYESIAN INFERENCE FOR THE PARAMETER OF INTEREST
Bayesian inference

Bayesians use probability to describe degrees of belief in parameter values; ‘beliefs’ are positive, and add up to one; (total prior belief = 1)
Bayesian inference

[Appalling archery pun goes here]
Bayesian inference

[Appalling archery pun goes here]

Here it is! Using a model, we can say how likely that data point is, under all the possible true bullseye locations;

\[y = \text{arrow} \]
Bayesian inference

[Appalling archery pun goes here]

Bayes theorem tells us how to update our beliefs about the bullseye location; they're now prop'l to prior x likelihood;

(Total posterior belief = 1)
Bayesian inference

Here’s exactly the same idea, in practice;

• During the search for Air France 447, from 2009-2011, knowledge about the black box location was described via probability – i.e. using Bayesian inference
• Eventually, the black box was found in the red area
Bayesian inference

How to update knowledge, as data is obtained? We use;

- **Prior distribution**: what you know about parameter θ, excluding the information in the data – denoted $p(\theta)$
- **Likelihood**: based on modeling assumptions, how (relatively) likely the data y are *if* the truth is θ – denoted $p(y|\theta)$

So how to get a **posterior distribution**: stating what we know about β, combining the prior with the data – denoted $p(\beta|Y)$?

Bayes Theorem *used for inference* tells us to multiply;

$$
p(\theta|y) \propto p(y|\theta) \times p(\theta)
$$

Posterior \propto Likelihood \times Prior.

... and that’s it! (essentially!)

- No replications – e.g. no replicate plane searches
- Given modeling assumptions & prior, process is automatic
- Keep adding data, and updating knowledge, as data becomes available... knowledge will concentrate around true θ
Bayesian inference

Bayesian inference can be made, er, transparent;

Common sense reduced to computation

Pierre-Simon, marquis de Laplace (1749–1827)
Inventor of Bayesian inference
Bayesian inference

The same example; recall posterior \propto prior \times likelihood;

A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule

Stephen Senn, Statistician & Bayesian Skeptic (mostly)
But where do priors come from?

An important day at statistician-school?

There’s nothing wrong, dirty, unnatural or even *unusual* about making assumptions — carefully. Scientists & statisticians all make assumptions... even if they don’t like to talk about them.
But where do priors come from?

Priors come from all data external to the current study, i.e. everything else.

‘Boiling down’ what subject-matter experts know/think is known as *eliciting* a prior.

It’s not easy (see right) but here are some simple tips;

- Discuss parameters experts understand – e.g. code variables in familiar units, make comparisons relative to an easily-understood reference, *not* with age=height=IQ=0
- Avoid *leading questions* (just as in survey design)
- The ‘language’ of probability is unfamiliar; help users express their uncertainty

Kynn (2008, JRSSA) is a good review, describing many pitfalls.
But where do priors come from?

Ideas to help experts ‘translate’ to the language of probability;

Use 20×5% stickers (Johnson et al 2010, J Clin Epi) for prior on survival when taking warfarin

- Typically these ‘coarse’ priors are smoothed. Providing the basic shape remains, exactly how much you smooth is unlikely to be critical in practice.
- Elicitation is also very useful for non-Bayesian analyses – it’s similar to study design & analysis planning

Normalize marks (Latthe et al 2005, J Obs Gync) for prior on pain effect of LUNA vs placebo
But where do priors come from?

If the experts disagree? Try it both ways; (Moatti, Clin Trl 2013)

Parmer et al (1996, JNCI) popularized the definitions, they are now common in trials work.

Known as ‘Subjunctive Bayes’; if one had this prior and the data, this is the posterior one would have. If one had that prior... etc.

If the posteriors differ, what You believe based on the data depends, importantly, on Your prior knowledge. To convince other people expect to have to convince skeptics – and note that convincing [rational] skeptics is what science is all about.
When don’t priors matter (much)?

When the data provide a lot more information than the prior, this happens; (recall the stained glass color-scheme)

These priors (& many more) are dominated by the likelihood, and they give very similar posteriors – i.e. everyone agrees. (Phew!)
When don’t priors matter (much)?

A related idea; try using very flat priors to represent ignorance;

- Flat priors do NOT actually represent ignorance! Most of their support is for very extreme parameter values
- For parameters in ‘famous’ regression models, this idea works okay – it’s more generally known as ‘Objective Bayes’
- For many other situations, it doesn’t, so be careful! (And also recall that prior elicitation is a useful exercise)
When don’t priors matter (much)?

Back to having very informative data – now zoomed in;

The likelihood *alone* (yellow) gives the classic 95% confidence interval. But, to a good approximation, it goes from 2.5% to 97.5% points of Bayesian posterior (red) – a 95% *credible* interval.

- With large samples*, sane frequentist confidence intervals and sane Bayesian credible intervals are essentially identical
- With large samples*, it’s actually *okay* to give Bayesian interpretations to 95% CIs, i.e. to say we have ≈95% posterior belief that the true β lies within that range

* and some regularity conditions
When don’t priors matter (much)?

We can exploit this idea to be ‘semi-Bayesian’; multiply what the likelihood-based interval says by Your prior.

One way to do this;

- Take point-estimate $\hat{\beta}$ and corresponding standard error stderr, calculate precision $1/\text{stderr}^2$
- Elicit prior mean β_0 and prior standard deviation σ; calculate prior precision $1/\sigma^2$
- ‘Posterior’ precision $= 1/\text{stderr}^2 + 1/\sigma^2$ (which gives overall uncertainty
- ‘Posterior’ mean $= \text{precision-weighted mean of } \hat{\beta} \text{ and } \beta_0$

Note: This is a (very) quick-and-dirty approach; we’ll see much more precise approaches in later sessions.
When don’t priors matter (much)?

Let’s try it, for a prior strongly supporting small effects, and with data from an imprecise study;

- ‘Textbook’ classical analysis says ‘reject’ ($p < 0.05$, woohoo!)
- Compared to the CI, the posterior is ‘shrunk’ toward zero; posterior says we’re sure true β is very small (& so hard to replicate) & we’re unsure of its sign. So, hold the front page
When don’t priors matter (much)?

Hold the front page... does that sound familiar?

Problems with the ‘aggressive dissemination of noise’ are a current hot topic...

- In previous example, approximate Bayes helps stop over-hyping – ‘full Bayes’ is better still, when you can do it
- *Better* classical analysis also helps – it can note e.g. that study tells us little about β that’s useful, not just $p < 0.05$
- No statistical approach will stop selective reporting, or fraud. Problems of biased sampling & messy data can be fixed (a bit) but only using background knowledge & assumptions
Where is Bayes commonly used?

Allowing approximate Bayes, one answer is ‘almost any analysis’. More-explicitly Bayesian arguments are often seen in:

- Hierarchical modeling
 One expert calls the classic frequentist version a “statistical no-man’s land”

- Complex models – for e.g. messy data, measurement error, multiple sources of data; fitting them is possible under Bayesian approaches, but perhaps still not easy
Are all classical methods Bayesian?

We’ve seen that, for popular regression methods, with large n, Bayesian and frequentist ideas often don’t disagree much. This is (provably!) true more broadly, though for some situations statisticians haven’t yet figured out the details. Some ‘fancy’ frequentist methods that can be viewed as Bayesian are;

- Fisher’s exact test – its p-value is the ‘tail area’ of the posterior under a rather conservative prior (Altham 1969)
- Conditional logistic regression – like Bayesian analysis with particular random effects models (Severini 1999, Rice 2004)
- Robust standard errors – like Bayesian analysis of a ‘trend’, at least for linear regression (Szpiro et al 2010)

And some that can’t;
- Many high-dimensional problems (shrinkage, machine-learning)
- Hypothesis testing (‘Jeffrey’s paradox’) ...but NOT significance testing (Rice 2010... available as a talk)

And while e.g. hierarchical modeling & multiple imputation are easier to justify in Bayesian terms, they aren’t unfrequentist.
Fight! Fight! Fight!

Two old-timers slugging out the Bayes vs Frequentist battle;

If [Bayesians] would only do as [Bayes] did and publish posthumously we should all be saved a lot of trouble

Maurice Kendall (1907–1983), JRSSA 1968

The only good statistics is Bayesian Statistics

• For many years – until recently – Bayesian ideas in statistics* were widely dismissed, often without much thought
• Advocates of Bayes had to fight hard to be heard, leading to an ‘us against the world’ mentality – & predictable backlash
• Today, debates tend be less acrimonious, and more tolerant

* and sometimes the statisticians who researched and used them
But writers of dramatic/romantic stories about Bayesian “heresy” [NYT] tend (I think) to over-egg the actual differences; among those who actually understand both, it’s hard to find people who totally dismiss either one. Keen people: Vic Barnett’s *Comparative Statistical Inference* provides the most even-handed exposition I know.
Fight! Fight! Fight!

XKCD yet again, on Frequentists vs Bayesians;

DID THE SUN JUST EXPLODE?
(IT'S NIGHT, SO WE'RE NOT SURE)
THIS NEUTRINO DETECTOR MEASURES WHETHER THE SUN HAS GONE NOVA.
THEN, IT ROLLS TWO DICE. IF THEY BOTH COME UP SIX, IT LIES TO US.
OTHERWISE, IT TELLS THE TRUTH.
LET'S TRY.
DETECTOR! HAS THE SUN GONE NOVA?
(Roll)
YES.

FREQUENTIST STATISTICIAN:
THE PROBABILITY OF THIS RESULT HAPPENING BY CHANCE IS \(\frac{1}{36} = 0.027 \).
SINCE \(p < 0.05 \), I CONCLUDE THAT THE SUN HAS EXPLODED.

BAYESIAN STATISTICIAN:
BET YOU $50 IT HASN'T.

Here, the fun relies on setting up a straw-man; \(p \)-values are not the only tools used in a *skillful* frequentist analysis.

Note: Statistics can be *hard* — so it’s not difficult to find examples where it’s done badly, under any system.
What did you miss out?

Recall, there’s a lot more to Bayesian statistics than I’ve talked about...

These books are all recommended – the course site will feature more resources. We will focus on Bayesian approaches to:

- Regression-based modeling
- Testing
- Learning about multiple parameters (testing)
- Combining data sources (imputation, meta-analysis)

– but the general principles apply very broadly.
Summary

Bayesian statistics:

- Is useful in many settings, and intuitive
- Is *often* not very different *in practice* from frequentist statistics; it is often helpful to think about analyses from both Bayesian and non-Bayesian points of view
- Is not reserved for hard-core mathematicians, or computer scientists, or philosophers. Practical uses abound.

Wikipedia’s Bayes pages aren’t great. Instead, start with the linked texts, or these;

- Scholarpedia entry on Bayesian statistics
- Peter Hoff’s book on Bayesian methods
- The Handbook of Probability’s chapter on Bayesian statistics
- Ken’s website, or Jon’s website