Introduction to the Design and Evaluation of Group Sequential Clinical Trials

Session 3 - Evaluation of Group Sequential Designs

Presented July 27, 2016

Daniel L. Gillen
Department of Statistics
University of California, Irvine

John M. Kittelson
Department of Biostatistics & Informatics
University of Colorado Denver

© 2016 Daniel L. Gillen, PhD and John M. Kittelson, PhD

Statistical basis for stopping criteria

Recall: reasons to monitor trial endpoints

► To maintain the validity of the informed consent for:
 ► Subjects currently enrolled in the study.
 ► New subjects entering the study.

► To ensure the ethics of randomization.
 ► Randomization is only ethical under equipoise.
 ► If there is not equipoise, then the trial should stop.

► To identify the best treatment as quickly as possible:
 ► For the benefit of all patients (i.e., so that the best treatment becomes standard practice).
 ► For the benefit of study participants (i.e., so that participants are not given inferior therapies for any longer than necessary).
Statistical basis for stopping criteria

Statistical basis for stopping

When do we have enough information to make a decision?

- Sepsis trial example:
 - Statistical standards for evidence in the fixed-sample trial
 - How might we implement those same standards at an interim analysis?

Statistical basis for stopping criteria

Recall sepsis trial fixed-sample design

- Primary outcome (28-day mortality):
 - $Y_{ki} \sim B(1, \theta_k)$ for ith patient in treatment group $k = 0, 1$

- Within-group summary measure: θ_k

- Between-group contrast: $\theta = \theta_1 - \theta_0$

- Design hypotheses (1-sided superiority test):
 - Null: $\theta \geq 0$
 - Alternative: $\theta \leq -0.07$

- Sample size: 1700 patients (850 per group) gives:
 - $\beta = 0.907$ for $\theta = -0.07$ if $\theta_0 = 0.3$.

SISCR - GSCT - 3 : 3
Statistical basis for stopping criteria
Example: sepsis trial

- Scientific/clinical structuring of parameter space

<table>
<thead>
<tr>
<th>Clinically Important Benefit</th>
<th>No Difference</th>
<th>Clinically Important Harm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior</td>
<td>Inferior</td>
<td>Important Superiority</td>
</tr>
<tr>
<td>Important Superiority</td>
<td></td>
<td>Important Inferiority</td>
</tr>
</tbody>
</table>

Inference with an infinite sample size

- True effect (infinite sample size)

- E, F ⇒ Use new antibody
- D ⇒ Is it worthwhile if benefits are unimportant?
- A, B, C ⇒ Do not use new antibody
Statistical basis for stopping criteria
Example: sepsis trial

- **Possible conclusions upon trial completion**

 - Important Superiority → Important Inferiority
 - Superior → Inferior
 - Important Superiority → Important Inferiority
 - Clinically Important Benefit → No Difference → Clinically Important Harm

 - E, F ⇒ Use new antibody
 - A, B, C, D ⇒ Do not use new antibody

Statistical basis for stopping criteria
Example: sepsis trial

- **Possible conclusions at interim analysis**

 - Important Superiority → Important Inferiority
 - Superior → Inferior
 - Important Superiority → Important Inferiority
 - Clinically Important Benefit → No Difference → Clinically Important Harm

 - F ⇒ Stop?: use new antibody
 - D, E ⇒ Continue trial
 - A, B, C ⇒ Stop?: do not use new antibody
Fixed-sample design in \texttt{RCTdesign}

Sepsis design from session 2 (but using $\theta_+ = -0.07$ instead of -0.05):

```r
> SepsisFixed <- seqDesign( prob.model = "proportions", arms = 2,
+ null.hypothesis = .3, alt.hypothesis = 0.23, alpha = 0.025,
+ ratio = c(1., 1.), nbr.analyses = 1, test.type = "less",
+ sample.size=1700, power = "calculate",)
```

```r
> SepsisFixed
```

Call:
\texttt{seqDesign(prob.model = "proportions", arms = 2, null.hypothesis = 0.3,}
\texttt{ alt.hypothesis = 0.23, ratio = c(1, 1), nbr.analyses = 1,}
\texttt{ sample.size = 1700, test.type = "less", power = "calculate",}
\texttt{ alpha = 0.025)}

PROBABILITY MODEL and HYPOTHESES:
Theta is difference in probabilities (Treatment - Comparison)
One-sided hypothesis test of a lesser alternative:
 Null hypothesis : Theta \geq 0.00 (size = 0.0250)
 Alternative hypothesis : Theta \leq -0.07 (power = 0.9066)
(Fixed sample test)

STOPPING BOUNDARIES: Sample Mean scale

<table>
<thead>
<tr>
<th>Efficacy</th>
<th>Futility</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0418</td>
<td>-0.0418</td>
</tr>
</tbody>
</table>

Adding interim analyses in \texttt{RCTdesign}

Sepsis trial: adding interim analyses

- \texttt{RCTdesign} will automatically add interim analyses
-
 - \texttt{Defaults:}
 - Equally-spaced analyses
 - Emerson-Fleming symmetric designs
 - O’Brien-Fleming boundary shape

```r
> symmOBF.2 <- update(binomFixed, nbr.analyses=2)
> symmOBF.3 <- update(binomFixed, nbr.analyses=3)
> symmOBF.4 <- update(binomFixed, nbr.analyses=4)
```
Sepsis trial: adding interim analyses

Stopping bounds for `symmOBF.2`, `symmOBF.3`, `symmOBF.4`:

```r
> seqPlotBoundary(symmOBF.2, symmOBF.3, symmOBF.4)
```

Interim Analysis	**Stop for Efficacy**	**Stop for Futility**
`symmOBF.2`: | | |
N= 850 | -0.0842 | 0.0000 |
N=1700 | -0.0421 | -0.0421 |

`symmOBF.3`: | | |
N= 567 | -0.1274 | 0.0425 |
N= 850 | -0.0637 | -0.0212 |
N=1700 | -0.0425 | -0.0425 |

`symmOBF.4`: | | |
N= 425 | -0.1710 | 0.0855 |
N= 567 | -0.0855 | 0.0000 |
N= 850 | -0.0570 | -0.0285 |
N=1700 | -0.0427 | -0.0427 |
Sepsis trial: adding interim analyses

Effect of adding interim analyses

- Power decreases (unless sample size is increased)
- Expected sample size gets smaller

Effect of interim analyses on trial power

Does the number of interim analyses affect trial power?

```r
> seqPlotPower(symmOBF.2,symmOBF.3,symmOBF.4)
```

![Graph showing the effect of interim analyses on trial power](image)
Effect of interim analyses on trial power

Power difference from fixed-sample design

> seqPlotPower(symmOBF.2,symmOBF.3,symmOBF.4,reference=T)

```
> seqPlotPower(symmOBF.2,symmOBF.3,symmOBF.4,reference=T)
```

Effect of interim analyses on sample size

Does the number of interim analyses affect the sample size?

- Number of patients is a random variable summaries:
 - Average sample number (ASN)
 - 75th percentile of sample size distribution

> seqPlotASN(symmOBF.2,symmOBF.3,symmOBF.4)
Sepsis trial: reasons for stopping

Selecting reasons for early termination

- Stop for either efficacy or futility (e.g., symmOBF.4).
- Stop only for futility:
 \[\text{futOnlyOBF.4} \leftarrow \text{update(binomFixed, nbr.analyses=4, early.stopping="null")} \]
- Stop only for efficacy:
 \[\text{effOnlyOBF.4} \leftarrow \text{update(binomFixed, nbr.analyses=4, early.stopping="alt")} \]

Stopping bounds for symmOBF.4, futOnlyOBF.3, effOnlyOBF.4:

\[\text{seqPlotBoundary(symmOBF.4, futOnlyOBF.4, effOnlyOBF.4)} \]
Sepsis trial: reasons for stopping

Stopping bounds for symmOBF.4, futOnlyOBF.3, effOnlyOBF.4:

<table>
<thead>
<tr>
<th>Interim Analysis</th>
<th>Stop for Efficacy</th>
<th>Stop for Futility</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmOBF.4:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N= 425</td>
<td>-0.1710</td>
<td>0.0855</td>
</tr>
<tr>
<td>N= 567</td>
<td>-0.0855</td>
<td>0.0000</td>
</tr>
<tr>
<td>N= 850</td>
<td>-0.0570</td>
<td>-0.0285</td>
</tr>
<tr>
<td>N=1700</td>
<td>-0.0427</td>
<td>-0.0427</td>
</tr>
<tr>
<td>futOnlyOBF.4:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N= 425</td>
<td>-Inf</td>
<td>0.0883</td>
</tr>
<tr>
<td>N= 567</td>
<td>-Inf</td>
<td>0.0019</td>
</tr>
<tr>
<td>N= 850</td>
<td>-Inf</td>
<td>-0.0269</td>
</tr>
<tr>
<td>N=1700</td>
<td>-0.0413</td>
<td>-0.0413</td>
</tr>
<tr>
<td>effOnlyOBF.4:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N= 425</td>
<td>-0.1728</td>
<td>Inf</td>
</tr>
<tr>
<td>N= 567</td>
<td>-0.0864</td>
<td>Inf</td>
</tr>
<tr>
<td>N= 850</td>
<td>-0.0576</td>
<td>Inf</td>
</tr>
<tr>
<td>N=1700</td>
<td>-0.0432</td>
<td>-0.0432</td>
</tr>
</tbody>
</table>

Sepsis trial: reasons for stopping

Effect of stopping for one or more hypothesis

- Stopping for both null and alternative hypothesis:
 - Symmetric power for futility and efficacy decisions
 - Symmetric ASN for futility and efficacy decisions

- Stopping for futility (null hypothesis):
 - Power for efficacy may decrease
 - ASN reduced for futility, but not for efficacy

- Stopping for efficacy (alternative hypothesis):
 - Power for efficacy may decrease
 - ASN reduced for efficacy, but not for futility
Effect of number of boundaries on trial power

Does the number of boundaries affect trial power?

```r
> seqPlotPower(syommOBF.4, futOnlyOBF.4, effOnlyOBF.4)
```

![Plot showing the effect of number of boundaries on trial power](image)

Effect of number of boundaries on trial power

Power difference from fixed-sample design

```r
> seqPlotPower(syommOBF.4, futOnlyOBF.4, effOnlyOBF.4, reference=T)
```

![Plot showing the power difference from fixed-sample design](image)

Design of Group Sequential Trials

- *Statistical basis for stopping criteria*
- *Sepsis trial: add interim analyses*
- *Sepsis trial: number of boundaries*
 - *Sepsis trial: early conservatism*
 - *Sepsis trial: power vs maximal sample size*
- General characteristics of group sequential designs
 - *Boundary structure*
 - *Boundary scales*
 - *Boundary shape*
 - *Four canonical classes*

Case Study: Design of Hodgkin’s Trial

- Background
- Fixed sample design
- Group sequential design evaluations

SISCR - GSCT - 3: 21
Effect of number of boundaries on sample size

Does the number of boundaries affect the sample size?

- Number of patients is a random variable summaries:
 - Average sample number (ASN)
 - 75th percentile of sample size distribution

> seqPlotASN(symmOBF.4, futOnlyOBF.4, effOnlyOBF.4)

![Average Sample Size](image1)

![75th percentile](image2)

Sepsis trial: early conservatism

Selecting degree of early conservatism

- An important design consideration is whether it should be relatively easy or hard to stop at an early interim analysis:
 - O’Brien-Fleming design shows early conservatism: (i.e., relatively difficult to stop at early interim analyses).

The following give identical designs (due to default settings):

> symmOBF.4 <- update(binomFixed, nbr.analyses=4)
> symmOBF.4 <- update(binomFixed, nbr.analyses=4, P=c(1,1))

- Pocock design is not conservative in early decisions. (i.e., relatively easy to stop at early interim analyses).

> symmPOC.4 <- update(binomFixed, nbr.analyses=4, P=c(0.5,0.5))

- Degree of conservatism does not have to be symmetric.

> asym.4 <- update(binomFixed, nbr.analyses=4, P=c(1,0.8))
Sepsis trial: early conservatism

Stopping bounds for symmOBF.4, symmPOC.4, asym.4:

> seqPlotBoundary(symmOBF.4,symmPOC.4,asym.4)

![Graph showing stopping bounds for different trials](image-url)

Sepsis trial: early conservatism

Stopping bounds for

symmOBF.4, symmPOC.4, asym.4:

<table>
<thead>
<tr>
<th>Interim Analysis</th>
<th>Stop for Efficacy</th>
<th>Stop for Futility</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmOBF.4:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N= 425</td>
<td>-0.1710</td>
<td>0.0855</td>
</tr>
<tr>
<td>N= 567</td>
<td>-0.0855</td>
<td>0.0000</td>
</tr>
<tr>
<td>N= 850</td>
<td>-0.0570</td>
<td>-0.0285</td>
</tr>
<tr>
<td>N=1700</td>
<td>-0.0427</td>
<td>-0.0427</td>
</tr>
<tr>
<td>symmPOC.4:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N= 425</td>
<td>-0.0991</td>
<td>0.0000</td>
</tr>
<tr>
<td>N= 567</td>
<td>-0.0701</td>
<td>-0.0290</td>
</tr>
<tr>
<td>N= 850</td>
<td>-0.0572</td>
<td>-0.0419</td>
</tr>
<tr>
<td>N=1700</td>
<td>-0.0496</td>
<td>-0.0496</td>
</tr>
<tr>
<td>asym.4:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N= 425</td>
<td>-0.1697</td>
<td>0.0473</td>
</tr>
<tr>
<td>N= 567</td>
<td>-0.0848</td>
<td>-0.0097</td>
</tr>
<tr>
<td>N= 850</td>
<td>-0.0566</td>
<td>-0.0310</td>
</tr>
<tr>
<td>N=1700</td>
<td>-0.0424</td>
<td>-0.0424</td>
</tr>
</tbody>
</table>
Sepsis trial: early conservatism

Effect of early conservatism

- More conservatism (harder to stop at early analyses:
 - Tends to give higher power
 - Tends to give larger ASN
- Less conservatism (easier to stop):
 - Tends to decrease power
 - Tends to reduce ASN
- Asymmetric conservatism:
 - Often need early sensitivity for harm, but conservatism for efficacy

Effect of early conservatism on trial power

Does the degree of early conservatism affect trial power?

> seqPlotPower(seqPlotPower(symmOBF.4,symmPOC.4,asym.4)
Effect of early conservatism on trial power

Power difference from fixed-sample design

\[\text{seqPlotPower(symmOBF.4, symmPOC.4, asym.4, reference=T)}\]

Effect of early conservatism on sample size

Does early conservatism affect the sample size?

- Number of patients is a random variable summaries:
 - Average sample number (ASN)
 - 75th percentile of sample size distribution

\[\text{seqPlotASN(symmOBF.4, symmPOC.4, asym.4)}\]
Sepsis trial: power vs maximal sample size

Boundary shape

- Above designs use $N = 1700$:
 - Different group sequential designs have different power
- N can be chosen to give equal power
- For example, compare

```r
> symmPOCpower.4 <- update(symmPOC.4, power=0.8945)
```

Sepsis trial: power vs maximal sample size

Stopping bounds for

```
symmOBF.4, symmPOC.4, symmPOCpower.4:
```

```r
> seqPlotBoundary(symmOBF.4, symmPOC.4, symmPOCpower.4)
```
Sepsis trial: power vs maximal sample size

Power for symmOBF.4, symmPOC.4, symmPOCpower.4:

```r
> seqPlotPower(symmOBF.4, symmPOC.4, symmPOCpower.4)
```

![Graph showing power comparison]

Sepsis trial: power vs maximal sample size

Power difference from fixed-sample design:

```r
> seqPlotPower(symmOBF.4, symmPOC.4, symmPOCpower.4, reference=T)
```

![Graph showing power difference]
General characteristics of group sequential designs

Specifying interim decision criteria

- Key considerations (illustrated in sepsis example):
 - Boundary structure
 - Boundary scale
 - Number and timing of interim analyses
 - Boundary shape
 - Number of boundaries: reasons for early termination
 - Statistical operating characteristics
 - Design properties (ASN, stopping probabilities)

Boundary structure

General structure for stopping rules

- Number and timing of analyses
 - N counts the sampling units accrued to the study (with outcome measurements)
 - Up to N analyses of the data to be performed
 - Analyses performed after accruing sample sizes of $N_1 < N_2 < \cdots < N_J$
 - (More generally, N measures statistical information)

- Boundaries (decision criteria) at the analyses
 - $a_i \leq b_i \leq c_i \leq d_i$ where the a, b, c and d are boundaries at the i-the analysis (when N_j observations)
 - At the final (J-th) analysis $a_J = b_J$ and $c_J = d_J$ to guarantee stopping
Boundary structure

General structure for stopping rules

Illustration of general structure:

![General form for stopping boundaries](image)

- **Boundary structure**
 - General structure: boundary scales

Boundary scales

- Stopping boundaries can be defined on a variety of scales
 - Sum of observations
 - Point estimate of treatment effect
 - Normalized (Z) statistic
 - Fixed-sample P value
 - Error spending function
 - Conditional probability
 - Predictive probability
 - Bayesian posterior probability
General structure: boundary scales

Utility of scales when evaluating designs

- Several of the boundary scales have interpretations that are useful in evaluating the operating characteristics of a design
 - Sample mean scale
 - Conditional probability futility scales
 - Predictive probability futility scale
 - Bayesian posterior probability scale
 - (Error spending scale)

General structure: boundary shape and location

Boundary shape functions

- Π_j measures the proportion of total information accrued at the jth analysis
 - Often $\Pi_j = \frac{N_j}{N_J}$
- Boundary shape function $f(\Pi_j)$ is a monotonic function used to relate the dependence of boundaries at successive analyses on the information accrued to the study at that analysis
General structure: boundary shape and location

General structure of decision boundaries

- Stopping boundaries for the sample mean statistic:
 - $a_i = \theta_a - f_a(\Pi_j)$
 - $b_i = \theta_b + f_b(\Pi_j)$
 - $c_i = \theta_c - f_c(\Pi_j)$
 - $d_i = \theta_d + f_d(\Pi_j)$

where θ_s represents the hypothesis rejected by the corresponding boundary:

- $\hat{\theta}_j \leq a_i$ rejects $\theta \geq \theta_a$
- $\hat{\theta}_j \geq b_i$ rejects $\theta \leq \theta_b$
- $\hat{\theta}_j \leq c_i$ rejects $\theta \geq \theta_c$
- $\hat{\theta}_j \geq d_i$ rejects $\theta \leq \theta_d$

Boundary shape function (unified family)

- Parameterization of boundary shape (unified family):
 \[
 f_* (\Pi_j) = \left[A_* + \Pi_j^{-P_*} (1 - \Pi_j)^{-R_*} \times G_* \right]
 \]

- Distinct parameters possible for each boundary
- Parameters A_*, P_*, and R_* are typically specified by trialist
- Critical value G_* usually calculated by computer search using sequential sampling density
General structure: boundary shape and location

Unified design family

- Choice of P parameter ($P \geq 0$):
 - Larger values of P make early stopping more difficult (impossible when P infinite)
 - When $A = R = 0$:
 $$f_s(\Pi_j) = G_s \Pi_j^{-Ps}$$
 - $P = 0.5$ gives Pocock (1977) type boundary shapes (constant on Z scale)
 - $P = 1.0$ gives O'Brien-Fleming (1979) type boundary shapes (constant on partial sum scale)
 - $0.5 < P < 1$ corresponds to power family (Δ) in Wang and Tsiatis (1987): $P = 1 - \Delta$
 - Reasonable range of values: $0 < P < 2.5$
 - $P = 0$ with $A = R = 0$ possible for some (not all) boundaries, but not particularly useful
 - Illustrations to follow...

General structure: finite termination constraint

Constraints to assure termination at the Jth interim analysis and appropriate operating characteristics:

- Finite termination constraint:
 $$a_J = b_J \Rightarrow \theta_a - \theta_b = f_a(1) + f_b(1)$$
 $$c_J = d_J \Rightarrow \theta_c - \theta_d = f_c(1) + f_d(1)$$
 $$a_J \leq d_J \Rightarrow \theta_a - \theta_d \leq f_a(1) + f_d(1)$$
General structure: finite termination constraint

Constraints to assure termination at the Jth interim analysis and appropriate operating characteristics:

- We then select G_a, G_b, G_c, G_d in a 4-parameter search to satisfy the following operating characteristics:

 $$
 P[\hat{\theta}_M \leq a_M | \theta = \theta_a] = \beta_\ell \\
 P[\hat{\theta}_M \geq b_M | \theta = \theta_b] = 1 - \alpha_\ell \\
 P[\hat{\theta}_M \leq c_M | \theta = \theta_c] = 1 - \alpha_u \\
 P[\hat{\theta}_M \geq d_M | \theta = \theta_d] = \beta_u
 $$

 where:

 - M denotes the random time at which the trial stopped
 - α_ℓ, β_ℓ denote the size and power for the lower test
 - α_u, β_u denote the size and power for the upper test

Stopping rules: Unified family

Example: symmetric tests (Emerson & Fleming (1989))

- Symmetric tests are an important class of designs with
 - Symmetric operating characteristics:
 $$
 \alpha_\ell = \alpha_u = (1 - \beta_\ell) = (1 - \beta_u)
 $$
 - Symmetric boundary shapes
 (less important, but useful for illustration)
 $$
 f_a(\Pi_j) = f_b(\Pi_j) = f_c(\Pi_j) = f_d(\Pi_j) = f(\Pi_j)
 $$
 - It then follows that
 $$
 G_a = G_b = G_c = G_d = G
 $$
 - So that symmetric designs have the form:
 $$
 a_j = -f(\Pi_j) \\
 b_j = -\theta_* + f(\Pi_j) \\
 c_j = \theta_* - f(\Pi_j) \\
 d_j = f(\Pi_j)
 $$

 where $\theta_* = 2G$
Common design classes

Common designs: JK’s canonical classes

- There are an infinite number of group sequential designs for any particular trial
- Unified family provides general framework
- There are some natural classes that help to organize the possibilities
 - Why stop early (revisited):
 - Superiority study
 - Approximate equivalence study
 - Non-inferiority study
 - Equivalence (2-sided hypothesis) study
 - Standardized design scale
 - Common boundary forms:
 - Superiority study
 - Approximate equivalence study
 - Non-inferiority study
 - Equivalence (2-sided hypothesis) study

Reasons for early termination

- Setting (parameterization of the problem)
- Treatment effect measure: θ
- Suppose:
 - Larger θ means that active treatment is superior.
 - $\theta = 0$ denotes no difference between active and control treatment.
 - $\theta \geq \theta_+$ denotes clinically important superiority of active treatment.
 - $\theta \leq \theta_-$ denotes clinically important inferiority of active treatment.
 [Where $\theta_+ < 0 < \theta_-$]
Common design classes

Reasons for early termination

- Why would you want to stop a study early?
 - Superiority study:
 - For superiority (reject $H_0 : \theta \leq 0$)
 - For lack of superiority (reject $H_A : \theta > \theta_+$)
 - Approximate equivalence study:
 - For lack of inferiority (reject $H_0 : \theta \leq \theta_-$)
 - For lack of superiority (reject $H_A : \theta > \theta_+$)
 - Non-inferiority study:
 - For lack of inferiority (reject $H_0 : \theta \leq \theta_-$)
 - For inferiority (reject $H_A : \theta > 0$)
 - Equivalence (2-sided) study:
 - For superiority (reject $\theta \leq 0$)
 - For inferiority (reject $\theta > 0$)
 - For both non-inferiority and non-superiority (reject both $\theta \leq \theta_-$ and $\theta > \theta_+$)

Standardized scale

In what follows I present a standardized design. It can be mapped to any specific design.

- Standardization:
 - Without interim stopping, but with sample sizes $N_1 < N_2, \ldots, < N_J$:
 \[\hat{\theta}_j \sim N \left(\theta, \frac{V}{N_j} \right) \]
 where V is the variance (follows from probability model)
 - Let:
 \[\delta_j = \frac{\hat{\theta}_j - \theta_0}{\sqrt{V/N_j}} \]
 - Thus:
 \[\delta_j \sim N \left(\delta, \frac{1}{\Pi_j} \right) \]
 where $\Pi_j = \frac{N_j}{N_J}$.
Common design classes

Boundary form in standardized scale

- In general there are 4 potential boundaries in a group sequential design which I denote by \(a_j \leq b_j \leq c_j \leq d_j \) \((j = 1, \ldots, J)\):

\[
\begin{align*}
\hat{\delta}_j \geq d_j & \rightarrow \text{Reject } \delta \leq \delta_d \quad (\text{usually } \delta_d = 0) \\
\hat{\delta}_j \leq c_j & \rightarrow \text{Reject } \delta \geq \delta_c \quad (\text{usually } \delta_c = \delta_+) \\
\hat{\delta}_j \geq b_j & \rightarrow \text{Reject } \delta \leq \delta_b \quad (\text{usually } \delta_b = \delta_-) \\
\hat{\delta}_j \leq a_j & \rightarrow \text{Reject } \delta \geq \delta_a \quad (\text{usually } \delta_a = 0)
\end{align*}
\]

with \(\delta_- < 0 < \delta_+ \) (often \(\delta_- = -\delta_+ \)).

- Set \(d_J = c_J \) and \(a_J = b_J \) so that the trial has to terminate by analysis \(J \).

Common design classes

Boundary form (number and location)

General form for stopping boundaries

![Graph showing boundaries and decision points](image)
Boundary form (number and location)

A superiority design is obtained by an upward shift of the a- and b-boundaries.

General form for superiority boundaries

- Stop for superiority:
 \[
 \hat{\delta}_j \geq d_j \rightarrow \text{Reject } \delta \leq 0
 \]
- Stop for non-superiority:
 \[
 \hat{\delta}_j \leq a_j \rightarrow \text{Reject } \delta \geq \delta_+
 \]
- Stop for either superiority or non-superiority:
 \[
 \begin{align*}
 \hat{\delta}_j & \geq d_j \rightarrow \text{Reject } \delta \leq 0 \\
 \hat{\delta}_j & \leq a_j \rightarrow \text{Reject } \delta \geq \delta_+
 \end{align*}
 \]
Boundary form (number and location)

Superiority study

RCTdesign:

```r
> sup.D <- seqDesign(prob.model = "normal", arms = 1,
+   null.hypothesis = 0., alt.hypothesis = 3.92,
+   variance = 1., sample.size = 1, test.type = "greater",
+   nbr.analyses = 5, power = "calculate", alpha = 0.025,
+   epsilon = c(0., 1.), early.stopping = "alternative",
+   display.scale = seqScale(scaleType = "X"))
> sup.A <- update(sup.D, early.stopping = "null")
> sup.DA <- update(sup.D, early.stopping = "both")
```
Boundary form (number and location)

Non-inferiority study

- Stop for non-inferiority:
 \[\hat{\delta}_j \geq d_j \rightarrow \text{Reject } \delta \leq \delta_- \]

- Stop for inferiority:
 \[\hat{\delta}_j \leq a_j \rightarrow \text{Reject } \delta \geq 0 \]

- Stop for either inferiority or non-inferiority:
 \[\hat{\delta}_j \geq d_j \rightarrow \text{Reject } \delta \leq \delta_- \]
 \[\hat{\delta}_j \leq a_j \rightarrow \text{Reject } \delta \geq 0 \]

A non-inferiority design is obtained by a downward shift of the c- and d-boundaries.
Non-inferiority study

▶ RCT design:
```r
> nonInf.D <- update(sup.D, null.hypothesis=-3.92,
+    alt.hypothesis=0)
> nonInf.A <- update(nonInf.D, early.stopping="null")
> nonInf.DA <- update(nonInf.D, early.stopping="both")
```

Boundary form (number and location)

- **Stop for non-inferiority**
- **Stop for inferiority**
- **Stop for either decision**
- **Compare with sup design**
Boundary form (number and location)

Equivalence study

- Stop for superiority (of A over B or B over A):
 \[
 \hat{\delta}_j \geq d_j \rightarrow \text{Reject } \delta \leq 0 \\
 \hat{\delta}_j \leq a_j \rightarrow \text{Reject } \delta \geq 0
 \]

- Stop for equivalence:
 \[
 b_j \leq \hat{\delta}_j \leq c_j \rightarrow \text{Reject } \delta \leq \delta_- \text{ and } \delta \geq \delta_+
 \]

- Stop for either superiority or equivalence:
 \[
 \hat{\delta}_j \geq d_j \rightarrow \text{Reject } \delta \leq 0 \\
 b_j \leq \hat{\delta}_j \leq c_j \rightarrow \text{Reject } \delta \leq \delta_- \text{ and } \delta \geq \delta_+ \\
 \hat{\delta}_j \leq a_j \rightarrow \text{Reject } \delta \geq 0
 \]
Boundary form (number and location)

Equivalence study

- RCTdesign:
  ```r
  eq.Alt <- update(sup.D,test.type="two.sided",
                   epsilon=c(1,1))
  eq.Both <- update(eq.Alt,early.stopping="both")
  ```

Boundary form (number and location)

Equivalence study designs

Stop for superiority/inferiority

Stop for any decision

Sample Size

Mean Effect

Sample Size

Mean Effect
Design evaluation

- Interim analyses are used to address ethical and efficiency considerations
 - Scientific objectives are developed in the fixed-sample design
 - The monitoring plan (sequential design) should not alter the science
 * Maintain design hypotheses
 * Maintain design operating characteristics (PPV)
- Sequential sampling density
 Required to evaluate/maintain statistical properties
- Design characteristics and evaluation
- Examples

Sampling density for sequentially-sampled statistic

Historic context

- Wald (1947?): Sequential probability ratio test. Continuous monitoring; non-finite sample size.
- Pocock (1977): Application in clinical trials; small sample consistency (t-statistic); decision criteria that are constant on Z-scale.
- O’Brien-Fleming (1979): Consistency for χ^2 statistic; decision criteria that are constant on partial sum scale; (early conservatism).
Sampling density for sequentially-sampled statistic

Uses/need for sampling density

- Same applications as sampling density for non-sequential statistic
 - Inference: point, interval estimation, p-value
 - Search for boundaries that satisfy operating characteristics
 - Sample size/power of sequential test
 - Bias-adjustment for sequentially-sampled statistic
- We seek the bivariate sampling density \((M, S)\) where
 - \(M\) denotes the stopping time \((1 \leq M \leq J)\), and
 - \(S = S_M\) denotes the value of the partial sum statistic at the stopping time
- This density is determined by:
 - Nature of the outcome: probability model, functional, and contrast
 - Nature of the stopping rules (boundary shape)
 - Number of stopping boundaries
 - Timing of the interim analyses (in information time)
 - Notes: the density does not depend on the boundary scale. Boundaries from most other scales can be mapped to stopping criteria for \(\hat{\theta}\)

Group sequential sampling density

- Let \(S_j\) and \(C_j = S_j^2\) denote, respectively, the stopping and continuation sets at the \(j\)th interim analysis.
- The sampling density for the observation \((M = m, S = s)\) is:
 \[
 p(m, s; \theta) = \begin{cases}
 f(m, s; \theta) & s \not\in C_m \\
 0 & \text{else}
 \end{cases}
 \]
 where the (sub)density function \(f(j, s; \theta)\) is recursively defined as

 \[
 f(1, s; \theta) = \frac{1}{\sqrt{n_1 V}} \phi \left(\frac{s - n_1 \theta}{\sqrt{n_1 V}} \right)
 \]

 \[
 f(j, s; \theta) = \int_{C_{j-1}} \frac{1}{\sqrt{n_j V}} \phi \left(\frac{s - u - n_j \theta}{\sqrt{n_j V}} \right) f(j - 1, u; \theta) \, du,
 \]

 with \(\phi(x) = e^{-x^2/2}/\sqrt{2\pi}\) denoting the density for the standard normal distribution.
Design Evaluation: properties

Design properties
- There is no uniformly most powerful group sequential test; thus,
 - The unified family (RCTdesign) contains the full complement of possibilities
 - General classes (JK canonical classes) help structure the possibilities
 - There are continuua between classes that enables design iterations to begin in one class and move to a more suitable design
 - But, what properties should we be considering as we iterate?

Design Evaluation: properties

Design properties
- Elements that are established in the fixed-sample design:
 - Endpoint, prob model, functional, contrast
 - Maximal information (sample size, \(N_j \); design alternative hypothesis)
 - Statistical standard for evidence (\(\alpha \) level)
- Evaluation of group sequential design:
 - Sample size is a random variable; characteristics of interest:
 - Mean (Average Sample Number - ASN)
 - Quantiles (median, 25th, 75th percentiles)
 - power curve
 - Power for fixed \(N_j \)
 - \(N_j \) for fixed power
 - Stopping probability at each interim analysis
 - Inference at the boundary: What is the statistical inference (point estimate, interval estimate, and p-value) that would be reported if the trial is stopped?
- Iterate: modify the stopping rules until an acceptable mix of properties is found.
Design Evaluation: properties

Design properties

- RCTdesign (Suppose you have two designs: dsgnA, dsgnB):
 - Plot designs:
    ```r
    plot(dsgnA, dsgnB, superpose=T)
    ```
 - Plot ASN:
    ```r
    seqPlotASN(dsgnA, dsgnB)
    ```
 - Plot power:
    ```r
    seqPlotPower(dsgnA, dsgnB)
    seqPlotPower(dsgnA, dsgnB, reference=dsgnA)
    ```
 - Plot inference:
    ```r
    seqPlotInference(dsgnA, dsgnB)
    ```
 - Plot Stopping Probabilities
    ```r
    seqPlotStopProb(dsgnA)
    ```

Illustration of general design properties

Four classes of designs

- One-sided test; One-sided stopping
 (allow stopping for efficacy *or* futility, but not both)
- One-sided test; Two-sided stopping
 (allow stopping for either efficacy or futility)
- Two-sided test; One-sided stopping
 (allow stopping only for the alternative(s))
- Two-sided test; Two-sided stopping
 (allow stopping for either the null or the alternative)
Illustration of general design properties
Four design classes

1-sided test; stop for futility

1-sided test; stop for futility or efficacy

2-sided test; stop for alternative(s)

2-sided test; stop for null or alternative(s)

Power of one-sided tests

> seqPlotPower(sup.DA,sup.A)
Power of one-sided tests relative to fixed-sample test

> seqPlotPower(sup.DA,sup.A)

ASN for one-sided tests

> seqPlotASN(sup.DA,sup.A)
Stopping probabilities for one-sided tests

```r
> seqPlotStopProb(sup.DA, sup.A)
```

![Stopping Probabilities Diagram](image)

Inference at the boundary for `sup.DA`

```r
> seqPlotInference(sup.DA)
```

![Inference Diagram](image)
Inference at the boundary for \(\sup.A \)

\[
\text{\texttt{seqPlotInference(sup.A)}}
\]

Power of two-sided tests relative to fixed-sample test

\[
\text{\texttt{seqPlotPower(eq.Both, eq.Alt, reference=T)}}
\]
Design of Group Sequential Trials

Group sequential design for sepsis trial
*Statistical basis for stopping criteria
*Sepsis trial: add interim analyses
*Sepsis trial: number of boundaries
*Sepsis trial: early conservatism
*Sepsis trial: power vs maximal sample size
General characteristics
*Boundary structure
*Boundary scales
*Boundary shape
*Four canonical classes

Design evaluation
Group sequential sampling density
Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin’s Trial
Background
Fixed sample design
Group sequential design evaluations

Stopping probabilities for \textit{eq.	ext{Both}}
> seqPlotStopProb(eq.	ext{Both})
Stopping probabilities for eq.Alt

> seqPlotStopProb(eq.Alt)

Inference at the boundary for eq.Both

> seqPlotInference(eq.Both)
Illustration of general design properties

So what is the general behavior?

► For any given sample size, adding interim analyses reduces power.
► For any given power, adding interim analyses increases the sample size.
► Having fewer interim analyses:
 ► Leads to properties (maximal sample size, power, etc) that are closer to those of a fixed sample study.
 ► However, ASN may be larger and stopping probabilities lower.
► Having more early conservatism:
 ► Leads to properties (maximal sample size, power, etc) that are closer to those of a fixed sample study.
 ► However, ASN may be larger and stopping probabilities lower.
Case Study: Hodgkin’s Trial

Background

- Hodgkin’s lymphoma represents a class of neoplasms that start in lymphatic tissue

- Approximately 7,350 new cases of Hodgkin’s are diagnosed in the US each year (nearly equally split between males and females)

- 5-year survival rate among stage IV (most severe) cases is approximately 60-70%

Background (cont.)

- Common treatments include the use of chemotherapy, radiation therapy, immunotherapy, and possible bone marrow transplantation

- Treatment typically characterized by high rate of initial response followed by relapse

- Hypothesize that experimental monoclonal antibody in addition to standard of care will increase time to relapse among patients remission
Case Study: Hodgkin’s Trial

Definition of Treatment

- Administered via IV once a week for 4 weeks
- Patients randomized to receive standard of care plus active treatment or placebo (administered similarly)
- Treatment discontinued in the event of grade 3 or 4 AEs
- Primary analysis based upon intention-to-treat

Refinement of the primary endpoint

Primary endpoint: Comparison of hazards for event (censored continuous data)

- **Duration of followup**
 - Wish to compare relapse-free survival over 4 years
 - Patients accrued over 3 years in order to guarantee at least one year of followup for all patients

- **Measures of treatment effect (comparison across groups)**
 - Hazard ratio (Cox estimate; implicitly weighted over time)
 - No adjustment for covariates
 - Statistical information dictated by number of events (under proportional hazards, statistical information is approximately D/4)
Case Study: Hodgkin’s Trial

Definition of statistical hypotheses

Null hypothesis

- Hazard ratio of 1 (no difference in hazards)
- Estimated baseline survival
 - Median progression-free survival approximately 9 months
 - (needed in this case to estimate variability)

Alternative hypothesis

- One-sided test for decreased hazard
 - Unethical to prove increased mortality relative to comparison group in placebo controlled study (always??)
- 33% decrease in hazard considered clinically meaningful
 - Corresponds to a difference in median survival of 4.4 months assuming exponential survival

Criteria for statistical evidence

- **Type I error**: Probability of falsely rejecting the null hypothesis
 Standards:
 - Two-sided hypothesis tests: 0.050
 - One-sided hypothesis test: 0.025
- **Power**: Probability of correctly rejecting the null hypothesis (1-type II error)
 Popular choice:
 - 80% power
Case Study: Hodgkin’s Trial

Determination of sample size

- Sample size chosen to provide desired operating characteristics
 - Type I error: 0.025 when no difference in mortality
 - Power: 0.80 when 33% reduction in hazard

- Expected number of events determined by assuming
 - Exponential survival in placebo group with median survival of 9 months
 - Uniform accrual of patients over 3 years
 - Negligible dropout

Case Study: Hodgkin’s Trial

Specification of fixed sample design using RCTdesign

- Definition of original design

```r
> survFixed <- seqDesign( prob.model = "hazard", arms = 2, 
  null.hypothesis = 1, alt.hypothesis = 0.67, 
  ratio = c(1, 1), nbr.analyses = 1, 
  test.type = "less", 
  power = 0.80, alpha = 0.025 )

> survFixed
Call:
  seqDesign(prob.model = "hazard", arms = 2, null.hypothesis = 1, 
  alt.hypothesis = 0.67, ratio = c(1, 1), nbr.analyses = 1, 
  test.type = "less", power = 0.8, alpha = 0.025)

PROBABILITY MODEL and HYPOTHESES:
  Theta is hazard ratio (Treatment : Comparison)
  One-sided hypothesis test of a lesser alternative:
    Null hypothesis : Theta >= 1.00   (size = 0.025)
    Alternative hypothesis : Theta <= 0.67   (power = 0.800)
  (Fixed sample test)

STOPPING BOUNDARIES: Sample Mean scale
a     d
Time 1 (N= 195.75) 0.7557 0.7557
```
Case Study: Hodgkin’s Trial

Determining of sample size (cont.)

- **Interpretation:**
 - In order to desire the required number of patients we found in Session 2 that we would need to accrue:
 - $N = 76$ patients per year for 3 years if the null hypothesis were true (Total of 228 patients)
 - $N = 81$ patients per year for 3 years if the alternative hypothesis were true (Total of 243 patients)

Case Study: Hodgkin’s Trial

Re-designing the study

- **Sponsor felt that attaining 75-80 patients per year would be unrealistic**

- **Wished to consider design operating characteristics assuming approximately uniform accrual of 50 patients per year while maintaining the same accrual time and follow up**

- **Problem:** Need to determine the expected number of events if 50 subjects were accrued per year

- **Solution:** Solve backwards using the `nEvents` argument in `seqPHSubjects()`, substituting various numbers of events (see Session 2)
Case Study: Hodgkin’s Trial

Re-designing the study

- After a (manual) iterative search, we found that if roughly 50 patients are accrued yearly (under the alternative), 121 events would be expected.

```r
> seqPHSubjects( survFixed, controlMedian = 0.75, accrualTime = 3, followupTime = 1, nEvents = 121 )

accrualTime followupTime rate hazardRatio controlMedian nSubjects
1 3 1 46.584 1.00 0.75 139.75
2 3 1 49.757 0.67 0.75 149.27
```

Case Study: Hodgkin’s Trial

Re-designing the study

- Use the `update()` function in RCTdesign to update to the new sample size and compare operating characteristics.

```r
> survFixed.121 <- update( survFixed, sample.size=121, power="calculate" )
> survFixed.121

Call:
seqDesign(prob.model = "hazard", arms = 2, null.hypothesis = 1, alt.hypothesis = 0.67, ratio = c(1, 1), nbr.analyses = 1, sample.size = 121, test.type = "less", power = "calculate", alpha = 0.025)

PROBABILITY MODEL and HYPOTHESES:
Theta is hazard ratio (Treatment : Comparison)
One-sided hypothesis test of a lesser alternative:
Null hypothesis : Theta >= 1.00 (size = 0.0250)
Alternative hypothesis : Theta <= 0.67 (power = 0.5959)
(Fixed sample test)

STOPPING BOUNDARIES: Sample Mean scale
a d
Time 1 (N= 121) 0.7002 0.7002
Case Study: Hodgkin’s Trial

Statistical power using RCTdesign

- Often more useful to compare differences between power curves
- Use the reference argument in seqPlotPower()

![Graph showing power comparison between survFixed.196 and survFixed.121]
Candidate group sequential designs

- Principles in guiding initial choice of stopping rule
  - Early conservatism
    - Long-term benefit of high importance
    - Early stopping precludes the observation of long-term safety data
  - Ability to stop early for futility
    - Safety concerns
    - Logistical considerations (monetary)
  - Number and timing of interim analyses
    - Trade-off between power and sample size
    - Determined by information accrual (events) but ultimately scheduled on calendar time

Case Study: Hodgkin’s Trial

Candidate group sequential designs

- SymmOBF.2, SymmOBF.3, SymmOBF.4
  - One-sided symmetric stopping rules with O'Brien-Fleming boundary relationships having 2, 3, and 4 equally spaced analyses, respectively, and a max sample size of 196 events

- SymmOBF.Power
  - One-sided symmetric stopping rule with O'Brien-Fleming boundary having 4 equally spaced analyses, and 80% under the alternative hypothesis (HR=0.67)

- Futility.5, Futility.8, Futility.9
  - One-sided stopping rules from the unified family [5] with a total of 4 equally spaced analyses, with a maximal sample size of 196 events, and having O'Brien-Fleming lower (efficacy) boundary relationships and upper (futility) boundary relationships corresponding to boundary shape parameters P = 0.5, 0.8, and 0.9, respectively. P = 0.5 corresponds to Pocock boundary shape functions, and P = 1.0 corresponds to O'Brien-Fleming boundary relationships
Case Study: Hodgkin’s Trial

Candidate group sequential designs

- **Eff11.Fut8, Eff11.Fut9**
  - One-sided stopping rules from the unified family with a total of 4 equally spaced analyses, with a maximal sample size of 196 events, and having lower (efficacy) boundary relationships corresponding to boundary shape parameter \( P = 1.1 \) and upper (futility) boundary relationships corresponding to boundary shape parameters \( P = 0.8, \) and \( 0.9, \) respectively. \( P = 0.5 \) corresponds to Pocock boundary shape functions, and \( P = 1.0 \) corresponds to O’Brien-Fleming boundary relationships.

- **Fixed.Power**
  - A fixed sample study which provides the same power to detect the alternative (HR=0.67) as the *Futility.8 trial design*

Candidate group sequential designs

- Specification of candidate designs using `update()`

```r
> Fixed <- survFixed
> SymmOBF.2 <- update(Fixed, nbr.analyses=2, P=c(1,1), sample.size=196, power="calculate")
> SymmOBF.3 <- update(SymmOBF.2, nbr.analyses = 3, P=c(1,1))
> SymmOBF.4 <- update(SymmOBF.2, nbr.analyses = 4, P=c(1,1))
> SymmOBF.Power <- update(SymmOBF.4, power = 0.80)
> Futility.5 <- update(SymmOBF.4, P=c(1,.5))
> Futility.8 <- update(SymmOBF.4, P=c(1,.8))
> Futility.9 <- update(SymmOBF.4, P=c(1,.9))
> Eff11.Fut8 <- update(SymmOBF.4, P=c(1,1,8))
> Eff11.Fut9 <- update(SymmOBF.4, P=c(1,1,9))
> Fixed.Power <- update(SymmOBF.2, nbr.analyses=1, power=0.7767)
```
Case Study: Hodgkin’s Trial

Candidate group sequential designs

- Stopping boundaries for SymmOBF.4

```r
> SymmOBF.4
Call:
seqDesign(prob.model = "hazard", arms = 2, null.hypothesis = 1,
alt.hypothesis = 0.67, ratio = c(1, 1), nbr.analyses = 4,
sample.size = 196, test.type = "less", power = "calculate",
alpha = 0.025, P = c(1, 1))

PROBABILITY MODEL and HYPOTHESES:
Theta is hazard ratio (Treatment : Comparison)
One-sided hypothesis test of a lesser alternative:
Null hypothesis : Theta >= 1.00 (size = 0.0250)
Alternative hypothesis : Theta <= 0.67 (power = 0.7837)
(Emerson & Fleming (1989) symmetric test)

STOPPING BOUNDARIES: Sample Mean scale

<table>
<thead>
<tr>
<th>Time</th>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3183</td>
<td>1.7724</td>
</tr>
<tr>
<td>2</td>
<td>0.5642</td>
<td>1.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.6828</td>
<td>0.8263</td>
</tr>
<tr>
<td>4</td>
<td>0.7511</td>
<td>0.7511</td>
</tr>
</tbody>
</table>
```

Case Study: Hodgkin’s Trial

Boundaries on various design scales

- Normalized Z statistic: \( Z_j = \frac{\hat{\theta}_j - \theta_0}{se(\hat{\theta}_j)} \)

```r
> seqBoundary(SymmOBF.4, scale="Z")

STOPPING BOUNDARIES: Normalized Z-value scale

<table>
<thead>
<tr>
<th>Time</th>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4.0065</td>
<td>2.0032</td>
</tr>
<tr>
<td>2</td>
<td>-2.8330</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>-2.3131</td>
<td>-1.1566</td>
</tr>
<tr>
<td>4</td>
<td>-2.0032</td>
<td>-2.0032</td>
</tr>
</tbody>
</table>
```
**Case Study: Hodgkin’s Trial**

**Boundaries on various design scales**

- **Fixed sample P value statistic:** \( P_j = \Phi(z_j) \)

```
> 1-seqBoundary(SymmOBF.4, scale="P")
STOPPING BOUNDARIES: Fixed Sample P-value scale
 a d
 Time 1 (N= 49) 0.0000 0.9774
 Time 2 (N= 98) 0.0023 0.5000
 Time 3 (N= 147) 0.0104 0.1237
 Time 4 (N= 196) 0.0226 0.0226
```

- **Error spending statistic:**

\[
E_{aj} = \frac{1}{\alpha_L} \left( \Pr \left[ S_j \leq s_j, \bigcap_{k=1}^{j-1} S_k \in C_k \mid \theta = \theta_0 \right] + \sum_{\ell=1}^{j-1} \Pr \left[ S_{\ell} \leq a_{\ell}, \bigcap_{k=1}^{\ell-1} S_k \in C_k \mid \theta = \theta_0 \right] \right),
\]

where \( \alpha_L \) is the lower type I error of the stopping rule defined by

\[
\alpha_L = \sum_{\ell=1}^{J} \Pr \left[ S_{\ell} \leq a_{\ell}, \bigcap_{k=1}^{\ell-1} S_k \in C_k \mid \theta = \theta_0 \right].
\]

```
> seqBoundary(SymmOBF.4, scale="E")
STOPPING BOUNDARIES: Error Spending Function scale
 a d
 Time 1 (N= 49) 0.0012 0.0012
 Time 2 (N= 98) 0.0927 0.0927
 Time 3 (N= 147) 0.4470 0.4470
 Time 4 (N= 196) 1.0000 1.0000
```
Case Study: Hodgkin’s Trial

Boundaries on various design scales

- Error spending statistic:

\[
E_{ij} = \frac{1}{\alpha_L} \left( \Pr \left[ S_j \leq s_j, \bigcap_{k=1}^{j-1} S_k \in C_k \mid \theta = \theta_0 \right] + \sum_{\ell=1}^{j-1} \Pr \left[ S_\ell \leq a_\ell, \bigcap_{k=1}^{\ell-1} S_k \in C_k \mid \theta = \theta_0 \right] \right),
\]

where \( \alpha_L \) is the lower type I error of the stopping rule defined by

\[
\alpha_L = \sum_{\ell=1}^{J} \Pr \left[ S_\ell \leq a_\ell, \bigcap_{k=1}^{\ell-1} S_k \in C_k \mid \theta = \theta_0 \right].
\]

> seqBoundary(SymmOBF.4, scale="E") * 0.025

STOPPING BOUNDARIES: Error Spending Function scale

<table>
<thead>
<tr>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0023</td>
<td>0.0023</td>
</tr>
<tr>
<td>0.0112</td>
<td>0.0112</td>
</tr>
<tr>
<td>0.0250</td>
<td>0.0250</td>
</tr>
</tbody>
</table>

Case Study: Hodgkin’s Trial

Boundaries on various design scales

- \texttt{RCTdesign} also has the ability to incorporate prior distributions for treatment effects in order to evaluate:
  - Bayesian posterior probabilities
  - Bayesian predictive probabilities
  - More to come later...
Case Study: Hodgkin’s Trial

Visual comparison of stopping boundaries

- Stopping boundaries can be plotted using `seqPlotBoundary()`

![Stopping boundaries plot](image)

Case Study: Hodgkin’s Trial

Visual comparison of statistical power for selected designs

- Power curves (or differences) can be plotted with `seqPlotPower()`

![Power curves plot](image)
Case Study: Hodgkin’s Trial

Visual comparison of statistical power for selected designs

- As before, power curves (or differences) can be plotted with `seqPlotPower()`

![Power curves comparison](image1)

Case Study: Hodgkin’s Trial

Comparison of sample size distributions

- Mean and quantiles of the sample size distribution can be plotted with `seqPlotASN()`

![Sample size comparison](image2)
**Design of Group Sequential Trials**

Group sequential design for sepsis trial

*Statistical basis for stopping criteria*

*Sepsis trial: add interim analyses*

*Sepsis trial: number of boundaries*

*Sepsis trial: early conservatism*

*Sepsis trial: power vs maximal sample size*

General characteristics

*Boundary structure*

*Boundary scales*

*Boundary shape*

*Four canonical classes*

**General characteristics**

Group sequential designs

*Boundary structure*

*Boundary scales*

*Boundary shape*

*Four canonical classes*

**Design evaluation**

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

**Case Study: Design of Hodgkin’s Trial**

Background

Fixed sample design

Group sequential design evaluations

**Case Study: Hodgkin’s Trial**

Stopping probabilities at each analysis for design *Eff11.Fut8*

Plot stopping probabilities using the `seqPlotStopProb()` function

Inference at each analysis for design *Eff11.Fut8*

Plot inference on the boundaries using the `seqPlotStopProb()` function

---

**Inference corresponding to futility boundary**

---

**Inference corresponding to efficacy boundary**

---
Case Study: Hodgkin’s Trial

Tabulation of operating characteristics for design `Eff11.Fut8`

- Computed operating characteristics can be obtained with the `seqOC()` function

```r
> seqOC(Eff11.Fut8, theta=seq(.6,1,by=.2))

Operating characteristics
Theta ASN Power.lower
 0.6 139.24 0.9354
 0.8 151.43 0.3319
 1.0 114.51 0.0250

Stopping Probabilities:
Theta Time 1 Time 2 Time 3 Time 4
 0.6 0.0049 0.3339 0.4757 0.1855
 0.8 0.0286 0.2174 0.3891 0.3649
 1.0 0.1308 0.4939 0.2830 0.0923
```