Phenotype Harmonization Guidelines

SISG 2018 Module 12

Adrienne Stilp

July 19, 2018
What is phenotype harmonization?

Why do we need to do phenotype harmonization?

General steps for harmonization

QC of study phenotypes

QC of harmonized data

Documentation

DCC harmonization for TOPMed

Resources
Phenotype harmonization is the process by which source phenotypes from different studies are transformed so that they can be analyzed together.
The Mars Climate Orbiter

NASA/JPL/Corby Waste

Phenotype Harmonization Guidelines

Adrienne Stilp

What is phenotype harmonization?

Why do we need to do phenotype harmonization?

General steps for harmonization

QC of study phenotypes

QC of harmonized data

Documentation

DCC harmonization for TOPMed

Resources
Phenotype Harmonization Guidelines

Adrienne Stilp

What is phenotype harmonization?

Why do we need to do phenotype harmonization?

General steps for harmonization

QC of study phenotypes

QC of harmonized data

Documentation

DCC harmonization for TOPMed

Resources

But really, why?

To find genetic associations, we need:

1. Genotypes
 - big but **homogeneous**
 - similar across studies -> automated processing

2. Phenotypes
 - small but **heterogeneous**
 - every study collects data differently -> manual effort required

- Too much noise can cause a loss of power and mask true associations.
What needs to be done in phenotype harmonization?

1. Define the target phenotype
2. Decide which studies can be included
3. Process source data by study
 - Perform QC
 - Determine harmonization algorithm
 - Once per study
4. Estimate quality of harmonized dataset
 - More QC
 - May need to repeat previous steps
5. Document and disseminate harmonized phenotypes
QC of study phenotypes

Potential QC issues:

- Biologically invalid values
- Extreme phenotypes
- Missing data
- Internal inconsistencies

And a lot of others you can’t predict!
Biologically invalid values?

Example: implausibly small height measurements
True extreme phenotypes?

Example: Extreme triglycerides levels
Missing data?

Example: missing data in some components for diabetes

<table>
<thead>
<tr>
<th>subject_id</th>
<th>diabetes_self_report</th>
<th>diabetes_meds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>e</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>g</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>j</td>
<td>1</td>
</tr>
</tbody>
</table>
Internal inconsistencies?

Example: self-reported vs. MD-diagnosed diabetes

<table>
<thead>
<tr>
<th>subject_id</th>
<th>self_report</th>
<th>md_diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>e</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>g</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>i</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>j</td>
<td>0</td>
</tr>
</tbody>
</table>

discrepant
How do you fix problems?

- Which measurement (if any) is correct?
- Should you exclude subjects with discrepant data?
- Should outliers be excluded?
 - Measurement issue?
 - Real values indicative of rare variants with high effects (e.g., LOF)?

No blanket answer for all phenotypes!

- Involve both study members and domain experts
- Clearly specify how to handle these QC issues
QC of harmonized data

Are some studies very different than others?

- Quantitative data:
 - mean
 - standard deviation
 - general distribution

- Categorical
 - frequency

- May need to look at batch effects from other variables, e.g.:
 - Assay or device used?
 - Questionnaire version?

- For WGS with related subjects, fit a mixed model:
 - Fixed effects: age, sex, study
 - Random effects: genetic relatedness matrix
Different means?

![Box plot comparing height in two studies](image)

- **What is phenotype harmonization?**
- **Why do we need to do phenotype harmonization?**
- **General steps for harmonization**
 - QC of study phenotypes
 - QC of harmonized data
 - Documentation
- **DCC harmonization for TOPMed**
- **Resources**
Different standard deviations?

Phenotype Harmonization Guidelines

Adrienne Stilp

- What is phenotype harmonization?
- Why do we need to do phenotype harmonization?
- General steps for harmonization
- QC of study phenotypes
- QC of harmonized data
- Documentation
- DCC harmonization for TOPMed
- Resources

![Box plot comparing height in two studies](image)

- **Height (cm)**
 - Study 1: 150, 180, 190, 200, 210
 - Study 2: 200, 210, 220, 230, 240

- **Legend**
 - Red: study 1
 - Turquoise: study 2
Different frequencies?
What do you do if you find a difference?

- Is there a valid reason for the difference?
 - Expected differences due to study design?
 - e.g., higher prevalence of disease in a study targeting cases
 - Different distributions due to ancestry?

- Is there an error in the harmonization algorithm?
- Do this study’s data need to be treated differently?
- Is the study too different to be included?
- Do you need to adjust for the difference in analysis?

Again, no blanket answer to these questions!

- Need to involve both study members and domain experts
Documentation

Your phenotype should be reproducible.

▶ Accurate reporting in papers
▶ Able to add new studies in the future

What do you need?

▶ Definition of the harmonized phenotype
▶ Which component phenotypes were used
 ▶ source file?
 ▶ version?
▶ What algorithms were used
 ▶ ideally, the exact code you used
▶ How QC issues were addressed
DCC harmonization for TOPMed

- Acquire study data from dbGaP
 - Provides a bookkeeping trail for documentation
 - Available to the general scientific community
- Store data in a relational database
 - Both study phenotypes and harmonized phenotypes
 - Includes everything needed to recreate a harmonized phenotype
 - Metadata
 - Component phenotypes and versions
 - Algorithms
 - Allows automated production of datasets and documentation
What phenotypes is the DCC harmonizing?

1. Key NHLBI phenotypes
 - Blood cell counts
 - VTE
 - Atherosclerosis-related phenotypes
 - Lipids
 - Blood pressure
 - ...

2. Common covariates
 - Height
 - Weight
 - BMI
 - Smoking status
 - Race/ethnicity

The DCC is in the process of preparing harmonized phenotype files for upload to dbGaP.
DCC-harmonized phenotypes in the exchange areas

If you are a TOPMed investigator, look in the exchange area for phenotypes harmonized by the DCC:
Guidelines for Phenotype Harmonization

- Always use subject ids in phenotype files
- Decide who will do the harmonization
 - You or the studies?
- Provide clear instructions to the harmonizers
 - Description of target phenotype
 - Clear algorithm definition
 - How to handle missing data and QC issues
- Perform sanity checks on the files you receive
- Document, document, document!

If you are interested in a specific phenotype area, join the appropriate TOPMed working group!
Helpful references

- Bennett, SN et al. Phenotype harmonization and cross-study collaboration in GWAS consortia: the GENEVA experience. Genet Epidemiol. 2011 Apr; 35(3): 159-73