SISCR Module 4

Part I:
Introduction
Basic Concepts for Binary Biomarkers (Classifiers) and Continuous Biomarkers

Kathleen Kerr, Ph.D.
Associate Professor
Department of Biostatistics
University of Washington

Module Overview

- Part I: Introductory concepts
- Part II: Evaluating Risk Models
- Part III: Evaluating the Incremental Value of New Biomarkers
- Part IV: Some Guidance on Developing Risk Models
- Part V: Prognostic vs. Predictive Biomarkers

- also: R tutorial/demo
Module Overview

• The focus of this module is concepts rather than statistical details
 – we won’t be deriving hypothesis tests or distributional results
 – However, we will look at some mathematical expressions as we explore certain concepts

Part I Topics

• Motivating and illustrative examples
• True and false positive rates (TPR, FPR)
• Predictive values (PPV, NPV)
• ROC curves and area under the curve (AUC)
• Risk models
• What is “personal risk”?
Part 1 Overview

• Some examples
• To start: 1 marker X is binary (a “test”)
• We then move on: 1 marker X is continuous
• Multiple markers X, Y, …, and risk model
 \[P(\text{bad outcome} \mid X, Y, \ldots) \]

What is a Marker?

• DEF: a quantitative or qualitative measure that is potentially useful to classify individuals for current or future status
 – current → diagnostic marker
 – future → prognostic marker
• Includes biomarkers measured in biological specimens
• Includes imaging tests, sensory tests, clinical signs and symptoms, risk factors
What is the purpose of a classifier or risk prediction tool?

- To inform subjects about risk
- To help make medical decisions
 - Most often: identify individuals with high risk – high risk individuals have the greatest potential to benefit from an intervention
 - Sometimes: identify individuals with low risk not likely to benefit from an intervention
- To enrich a clinical trial with “high risk” patients

Terminology and Notation

- “case” or “event” is an individual with the (bad) outcome
- “control” or “nonevent” is an individual without the outcome

<table>
<thead>
<tr>
<th>case</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>D=1</td>
<td>D=0</td>
</tr>
<tr>
<td>D</td>
<td>\bar{D}</td>
</tr>
<tr>
<td>D</td>
<td>N</td>
</tr>
</tbody>
</table>
Terminology and Notation

• X, Y = potential predictors of D (biomarkers, demographic factors, clinical characteristics)
• Often: X is “standard” predictor(s) and Y is a new biomarker under consideration
• risk(X) = r(X) = P(D=1 | X)
 – risk(X,Y) = r(X,Y) = P(D=1 | X, Y)
• prevalence = P(D=1) = \(\rho \) (“rho”)

What is risk(X)?

• risk(x) ≡ P(D=1 | X=x) is the frequency of events/disease among the group with X = x

• “Personal risk” is not completely personal!
 – Will return to this at the end of Part I
Example: Coronary Artery Surgery Study (CASS)

• 1465 men undergoing coronary arteriography for suspected coronary heart disease
• Arteriography is the “gold standard” measure of coronary heart disease
 – Evaluates the number and severity of blockages in arteries that supply blood to the heart
• Simple cohort study
• Possible predictor: Exercise stress test (EST)
• Possible predictor: chest pain history (CPH)

Example: EDRN Breast Cancer Biomarkers

• Women with positive mammograms undergo biopsy, the majority turn out to be benign lesions
• Provides motivation to develop serum biomarker to reduce unnecessary biopsies
Example: Pancreatic Cancer Biomarkers

- 141 patients with either pancreatitis (n=51) or pancreatic cancer (n=90)
- Serum samples
- Two candidate markers:
 - A cancer antigen CA-125
 - A carbohydrate antigen CA19-9
- Which marker is better at identifying cancer?
- Is either marker good enough to be useful?

Wieand, Gail, James, and James *Biometrika* 1989

Example: Cardiovascular Disease

- Framingham study
- D = CVD event
- Y = high density lipoprotein
- X = demographics, smoking, diabetes, blood pressure, total cholesterol
- n = 3264, n_D=183
Simulated Data

- Artificial data are useful for exploring/illustrating methodology
- Next I introduce artificial datasets that we will use to illustrate some methods
 - Simulated data on DABS website
 - Simulated data from R packages `rmda` (risk model decision analysis) and `BioPET`
 - Normal and MultiNormal biomarker model

Example: Simulated data on DABS website

- \(n = 10,000, \, n_D=1017 \)
- \(Y \) = continuous, 1-dimensional
- \(X \) = continuous, 1-dimensional
- Search “Pepe DABS” or http://research.fhcrc.org/diagnostic-biomarkers-center/
 - “simulated risk reclassification dataset”
Example: Simulated data in R packages

- \(n = 500, n_D=60 \)
- \(X = \text{sex, smoking status, Marker1} \)
- \(Y = \text{Marker2} \)
- These simulated data will not appear in lecture notes, but will appear in software demo

Normal Model with 1 Marker

- Biomarker \(X \) Normally distributed in controls and in cases
 \[X \sim N(0,1) \text{ in controls} \]
 \[X \sim N(\mu,1) \text{ in cases} \]

![Distribution of X when \(\mu=1 \)]
Multivariate Normal Model with 2 Markers (Bivariate Normal)

- Biomarkers \((X_1, X_2)\) are bivariate Normally distributed in controls and in cases
\[
\hat{X} \sim MVN(\bar{\mu}, \Sigma) \text{ in controls} \\
\hat{X} \sim MVN(\bar{\mu}, \Sigma) \text{ in cases}
\]
\[
\Sigma = \begin{bmatrix} 1 & r \\ r & 1 \end{bmatrix}
\]

In these examples \(X_1\) and \(X_2\) each have mean \((0,0)\) in controls and mean \((1,2)\) in cases. We can picture marker data in 2-dimensional space.
• Biomarkers \((X_1, X_2)\) are bivariate Normally distributed in controls and in cases

\[
\hat{X} \sim MVN(\vec{0}, \Sigma) \text{ in controls}
\]
\[
\tilde{X} \sim MVN(\vec{\mu}, \Sigma) \text{ in cases}
\]

• This data model is useful in research because the logistic regression model holds for each marker and for both markers together.
 \[
 \text{logit } P(D=1|X) \text{ is linear in } X
 \]

Generalization: Multivariate Normal Model

• Biomarkers \((X_1, X_2, \ldots, X_k)\) are multivariate Normally distributed in controls and in cases

\[
\hat{X} \sim MVN(\vec{0}, \Sigma) \text{ in controls}
\]
\[
\tilde{X} \sim MVN(\vec{\mu}, \Sigma) \text{ in cases}
\]

• The linear logistic model holds for every subset of markers
QUANTIFYING CLASSIFICATION ACCURACY (BINARY MARKER OR “TEST”)

Terminology

- D = outcome (disease, event)
- Y = marker (test result)

<table>
<thead>
<tr>
<th></th>
<th>D=0</th>
<th>D=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y=0</td>
<td>true negative</td>
<td>false negative</td>
</tr>
<tr>
<td>Y=1</td>
<td>false positive</td>
<td>true positive</td>
</tr>
</tbody>
</table>
Terminology

TPR = true positive rate = \(P[Y=1|D=1] = \text{sensitivity} \)

FPR = false positive rate = \(P[Y=1|D=0] = 1-\text{specificity} \)

FNR = false negative rate = \(P[Y=0|D=1] = 1-\text{TPR} \)

TNR = true negative rate = \(P[Y=0|D=0] = 1-\text{FPR} \)

Ideal test: FPR=0 and TPR=1

Later, we will consider the costs associated with false positives.

Later, we will consider the benefits of identifying a true positive.
Coronary Artery Surgery Study (CASS)

<table>
<thead>
<tr>
<th></th>
<th>D=0</th>
<th>D=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y=0</td>
<td>327</td>
<td>208</td>
</tr>
<tr>
<td>Y=1</td>
<td>115</td>
<td>815</td>
</tr>
</tbody>
</table>

FPR = 115/442 = 26%

TPR = 815/1023 = 80%

What about Odds Ratios?

- Odds ratios are very popular:
 - Because logistic regression is popular
 - Odds Ratio estimable from case-control study
 - OR ≈ relative risk for rare outcome

\[OR = \frac{TPR \cdot (1-FPR)}{FPR \cdot (1-TPR)} \]

- Good classification (high TPR and low FPR)
 → large odds ratio
- However, large odds ratio does NOT imply good classification!
Good classification → large odds ratio

E.g., TPR=0.8, FPR=0.10

\[
OR = \frac{0.8 \times 0.9}{0.1 \times 0.2} = 36
\]

Coronary Artery Surgery Study (CASS)

<table>
<thead>
<tr>
<th>Exercise Test</th>
<th>Coronary Artery Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D=0</td>
</tr>
<tr>
<td>Y=0</td>
<td>327</td>
</tr>
<tr>
<td>Y=1</td>
<td>115</td>
</tr>
</tbody>
</table>

FPR=115/442=26%

TPR=815/1023=80%

OR ≈ 11.1

OR is large but classification performance is not exceptional.
large odds ratio does NOT imply good classification!

- Need to report both FPR and TPR
- Collapsing into one number (e.g., OR) is not sufficient
 - important information is lost
Misclassification Rate

MR = error rate = \(P(Y \neq D) \)

\[
= P(Y=0, D=1) + P(Y=1, D=0) \\
= \rho(1-TPR)+(1- \rho)FPR
\]

- \(\rho \) is the prevalence \(P(D=1) \)
- only appropriate if the cost of false positives equals the cost of false negatives
- seldom useful or appropriate in biomedical applications

Misclassification Rate

- There are *two kinds of wrong decisions* and the MR equates these. In order to be clinically relevant we must consider the *cost of each kind of error*
 - … later today
• FPR, TPR condition on true status (D)
• they address the question: “to what extent does the biomarker reflect true status?”

Predictive Values
Positive predictive value $PPV = P(D=1|Y=1)$
Negative predictive value $NPV = P(D=0|Y=0)$

• condition on biomarker results (Y)
• address the question: “Given my biomarker value is Y, what is the chance that I have the disease?” This is the question of interest for patients and clinicians when interpreting the result of a biomarker or test
Predictive Values

PPV and NPV are functions of TPR and FPR and the prevalence ρ

$$PPV = \frac{\rho \text{TPR}}{\rho \text{TPR} + (1 - \rho) \text{FPR}}$$

$$NPV = \frac{(1 - \rho)(1 - \text{FPR})}{(1 - \rho)(1 - \text{FPR}) + \rho(1 - \text{TPR})}$$

- TPR, FPR are properties of a test, but PPV, NPV are properties of a test in a population
- For low prevalence conditions, PPV tends to be low, even with very sensitive tests

Predictive Values - Example

A serious disease affects 1 in 10,000 in a patient population.

A company markets a screening test as “98% accurate” because both sensitivity and specificity have been estimated to be 98%.

Those who test positive are recommended to undergo an invasive procedure for definitive diagnosis.

Should there be general screening for the patient population?

- NPV = ?
- PPV = ?
False Discovery Rate

False Discovery Rate $FDR = P(D=0|Y=1)$

$= 1 - PPV$

“False Discovery Rate” and “False Positive Rate” sound similar, but they are not the same!

• **FPR**: among all those who are not diseased, how many were called positive

• **FDR**: among all those you called positive, how many were not actually diseased.

• *We will not use or further discuss FDR further today.*

CONTINUOUS MARKERS: ROC CURVES
Motivation

• Most biomarkers are continuous

Convention

• Assume larger Y more indicative of disease
 – otherwise replace Y with -Y
• Formally: \(P(D=1 \mid Y) \) increasing in Y

Receiver Operating Characteristic (ROC) Curve

• generalizes (FPR, TPR) to continuous markers
• considers rules based on thresholds “\(Y \geq c \)”
 – makes sense if \(P(D=1 \mid Y) \) increasing in Y
• \(TPR(c) = P(Y \geq c \mid D=1) \)
• \(FPR(c) = P(Y \geq c \mid D=0) \)
• \(ROC(\cdot) = \{FPR(c), TPR(c) \mid c \text{ in } (-\infty, \infty)\} \)
Each point on the ROC curve corresponds to a threshold for declaring “marker-positive.”
Marker Values

Controls

Cases

False Positive Rate

True Positive Rate

Marker Values

False Positive Rate

True Positive Rate
Properties of ROC curves

- non-decreasing from (0,0) to (1,1) as threshold decreases from \(c=\infty \) to \(c= -\infty \)
- *ideal* marker has control distribution completely disjoint from case distribution; ROC through (0,1)
- *useless* marker has ROC equal to 45 degree line
- doesn’t depend on scale of \(Y \): invariant to monotone increasing transformations of \(Y \)
- puts different markers on a common relevant scale
- shows entire range of possible performance
Pancreatic cancer biomarkers (Wieand et al 1989)

ROC curves for pancreatic cancer biomarkers
CA-19-9 appears to be the more accurate diagnostic biomarker for pancreatic cancer.

- for most fixed FPR, CA-19-9 has the better corresponding TPR
- for most fixed TPR, CA-19-9 has the better corresponding FPR

Summarizing ROC Curves: AUC

- **AUC** is Area under ROC curve
- AUC = $\int_{0}^{1} \text{ROC}(t) \, dt = \text{average}$(TPR)
 - average is uniform over (0,1)
- commonly used summary of an ROC curve
 - also called the c-index or c-statistic
- ideal test: AUC=1.0
- useless test: AUC=0.5
- A single number summary of a curve is necessarily a crude summary
AUC: probabilistic interpretation

- $P(Y_D > Y_N)$ for a randomly selected case D and a randomly selected control N
 - Provides an interpretation for AUC beyond “area under ROC curve”
- The AUC is a summary of an ROC curve that is commonly used to compare ROC curves – it is interpretable, but the interpretation also shows that AUC is not clinically meaningful
Risk Model: Huntington’s Disease

• Huntington’s Disease is caused by the gene \(HTT \) on human chromosome 4. There is a CAG segment that is repeated 10-35 times in non-diseased individuals. If the segment is repeated 36-120+ times, a person always* develops Huntington’s Disease in middle-age. The genetic abnormality is dominant, meaning one abnormal gene causes disease.
 - *40+ times: always develop HD
 - *36-39 times: might not develop HD (ignoring this small possibility for this example)

Risk Model: Huntington’s Disease

• Relevant Population: Individuals with a biological parent who have Huntington’s Disease
• Within this population, an individual has a 50% chance of developing HD depending on whether he or she inherited the abnormal or normal version of the gene from the affected parent.
• \(P(D) = \frac{1}{2} = \rho \) in this population.
Risk Model: Huntington’s Disease

- An individual can choose to have his HTT gene genotyped. Say HTT=0 means 0 copies of abnormal gene; HTT=1 means 1 copy of abnormal gene.
- \(P(D|HTT=0)=0\% ; P(D|HTT=1)=100\% . \)
- The marker HTT **stratifies** the patient population (risk=50%) into the subgroup with 0% risk and the subgroup with 100% risk.

Risk model

- risk prediction model – gives a risk for a marker value or a combination of markers
- Predicted risks are in the interval \([0,1]\) and interpreted as probabilities
- It is rare that a risk model is definitive like the HD example
 - In fact, because the genetic test for Huntington’s Disease is definitive, most people do not even think of it as a risk model
Risk model examples

- Most risk models combine information from multiple risk factors

- E.g., Gail model for breast cancer risk
 - for use in women with no history of breast cancer
 - Estimates 5-year risk of breast cancer based on current age, age at menarche, age at first birth, family history, race.

- E.g., Framingham CHD risk score
 - Estimates risk of CHD based on age, sex, smoking status, total and HDL cholesterol, blood pressure

- E.g. STS risk score for dialysis following cardiac surgery is formed via:
 - STS risk score = f(α + β₁ Age + β₂ Surgery Type + β₃ Diabetes + β₄ MI Recent + β₅ Race + β₆ Chronic Lung Disease + β₇ Reoperation + β₈ NYHA Class + β₉ Cardiogenic Shock+ β₁₀ Last Serum Creatinine)
What is “personal risk”?

• Recall: \(\text{risk}(x) \equiv \mathbb{P}(D=1 \mid X=x) \) is the frequency of events among the group with marker values \(x \)

• “Personal risk” is not completely personal!
 – (next example)

What is “personal risk”?

• Suppose the prevalence of \(D \) in “Population A” is 1%
 – Without any additional information, the only valid risk prediction instrument is to assign everyone in the population risk=1%

• Suppose we have a marker \(X \) that tends to be higher in cases than controls

Distribution of marker \(X \) in controls (blue) and cases (red)
What is “personal risk”?

• Suppose an individual in Population A has X measured as 1.
• We can calculate his risk(X=1)≈1.6%
 – calculation uses Bayes’ rule

What is “personal risk”?

• Suppose the marker acts exactly the same in Population B. The only difference between Populations A and B is that B has prevalence=10%.
• An individual in Population B has X=1. For that individual, his risk is ≈15.5%
What is “personal risk”?

• “Personal risk” is a term that is prone to be misconstrued
• Risk is personal when calculated based on personal characteristics
• However, personal risk is not completely divorced from population characteristics. The previous example shows that the population (specifically, the population prevalence) affects “personal” risk.

What is “personal risk”?

• Occasionally one hears mention of estimating a person’s “individual risk” or “true personal risk.”
• Frequentist statisticians cannot really claim to do so.
• One might claim John’s “true risk” of a heart attack in the next 5 years is 7%. But we can only observe John having or not having a heart attack in the next 5 years. I cannot observe John having a heart attack in 7% of 5-year periods.
• The best I can claim is that “among people with John’s characteristics, 7% will have a heart attack in the next 5 years.”
 – More than one way to define “people like John.”
Summary

• Some example datasets
• FPR, TPR
• PPV, NPV
 – function of FPR, TPR and disease prevalence
• ROC curves
• AUC
 – geometric interpretation as area under curve
 – probability interpretation
• risk model: \(\text{risk}(X) = P(D=1|X) \)