Population Genetic Data Analysis
(revised July 13, 2018)

Summer Institute in Statistical Genetics
University of Washington
July 11-13, 2018

Jérôme Goudet: jerome.goudet@unil.ch

Bruce Weir: bsweir@uw.edu
## Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Slide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic Data</td>
<td>3</td>
</tr>
<tr>
<td>Allele Frequencies</td>
<td>39</td>
</tr>
<tr>
<td>Allelic Association</td>
<td>78</td>
</tr>
<tr>
<td>Population Structure &amp; Relatedness</td>
<td>161</td>
</tr>
<tr>
<td>Notation</td>
<td>168</td>
</tr>
<tr>
<td>Allelic Measure Predicted Values</td>
<td>175</td>
</tr>
<tr>
<td>Genotypic Measure Predicted Values</td>
<td>182</td>
</tr>
<tr>
<td>Estimates for Individuals</td>
<td>200</td>
</tr>
<tr>
<td>Estimates for Populations</td>
<td>225</td>
</tr>
</tbody>
</table>

Lectures on these topics by Bruce Weir will alternate with R exercises led by Jérôme Goudet. The R material is at [http://www2.unil.ch/popgen/teaching/SISG18/](http://www2.unil.ch/popgen/teaching/SISG18/)
GENETIC DATA
Sources of Population Genetic Data

Phenotype
- Mendel’s peas
- Blood groups

Protein
- Allozymes
- Amino acid sequences

DNA
- Restriction sites, RFLPs
- Length variants: VNTRs, STRs
- Single nucleotide polymorphisms
- Single nucleotide variants
## Mendel’s Data

<table>
<thead>
<tr>
<th>Seed characters</th>
<th>Dominant Form</th>
<th>Recessive Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>5474</td>
<td>Round</td>
<td>1850 Wrinkled</td>
</tr>
<tr>
<td>6022</td>
<td>Yellow</td>
<td>2001 Green</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plant characters</th>
<th>Dominant Form</th>
<th>Recessive Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>705</td>
<td>Grey-brown</td>
<td>224 White</td>
</tr>
<tr>
<td>882</td>
<td>Simply inflated</td>
<td>299 Constricted</td>
</tr>
<tr>
<td>428</td>
<td>Green</td>
<td>152 Yellow</td>
</tr>
<tr>
<td>651</td>
<td>Axial</td>
<td>207 Terminal</td>
</tr>
<tr>
<td>787</td>
<td>Long</td>
<td>277 Short</td>
</tr>
</tbody>
</table>
Genetic Data

Human ABO blood groups discovered in 1900.

Elaborate mathematical theories constructed by Sewall Wright, R.A. Fisher, J.B.S. Haldane and others. This theory was challenged by data from new data from electrophoretic methods in the 1960’s:

“For many years population genetics was an immensely rich and powerful theory with virtually no suitable facts on which to operate. ... Quite suddenly the situation has changed. The motherlode has been tapped and facts in profusion have been pored into the hoppers of this theory machine. ... The entire relationship between the theory and the facts needs to be reconsidered.“

STR markers: CTT set

(http://www.cstl.nist.gov/biotech/strbase/seq_info.htm)

<table>
<thead>
<tr>
<th>Locus</th>
<th>Structure</th>
<th>Chromosome</th>
<th>Usual No. of repeats</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF1PO</td>
<td>[AGAT]n</td>
<td>5q</td>
<td>6–16</td>
</tr>
<tr>
<td>TPOX</td>
<td>[AATG]n</td>
<td>2p</td>
<td>5–14</td>
</tr>
<tr>
<td>TH01*</td>
<td>[AATG]n</td>
<td>11p</td>
<td>3–14</td>
</tr>
</tbody>
</table>

* “9.3” is [AATG]6ATG[AATG]3

Length variants detected by capillary electrophoresis.
“CTT” Data - Forensic Frequency Database

<table>
<thead>
<tr>
<th>CSF1P0</th>
<th>TPOX</th>
<th>TH01</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>8</td>
</tr>
</tbody>
</table>
"STR typing in forensic genetics has been performed traditionally using capillary electrophoresis (CE). Massively parallel sequencing (MPS) has been considered a viable technology in recent years allowing high-throughput coverage at a relatively affordable price. Some of the CE-based limitations may be overcome with the application of MPS ... generate reliable STR profiles at a sensitivity level that competes with current widely used CE-based method."

Single Nucleotide Polymorphisms (SNPs)

“Single nucleotide polymorphisms (SNPs) are the most frequently occurring genetic variation in the human genome, with the total number of SNPs reported in public SNP databases currently exceeding 9 million. SNPs are important markers in many studies that link sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular bases of diseases. For this reason, over the past several years a great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis, yielding a large number of distinct approaches. ”

### AMD SNP Data

<table>
<thead>
<tr>
<th>SNP</th>
<th>Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs6424140</td>
<td>3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td>
</tr>
<tr>
<td>rs1496555</td>
<td>3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2</td>
</tr>
<tr>
<td>rs1338382</td>
<td>3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td>
</tr>
<tr>
<td>rs10492936</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>rs10489589</td>
<td>3 1 1 1 1 2 2 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>rs10489588</td>
<td>3 1 1 1 1 2 2 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>rs4472706</td>
<td>1 3 3 3 3 2 2 3 2 3 3 3 3 1 3 3 3 3</td>
</tr>
<tr>
<td>rs4587514</td>
<td>3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3</td>
</tr>
<tr>
<td>rs10492941</td>
<td>3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 1</td>
</tr>
<tr>
<td>rs1112213</td>
<td>0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>rs4648462</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>rs2455122</td>
<td>2 1 1 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2</td>
</tr>
<tr>
<td>rs2455124</td>
<td>2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2</td>
</tr>
<tr>
<td>rs10492940</td>
<td>2 1 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2</td>
</tr>
<tr>
<td>rs10492939</td>
<td>1 2 1 1 1 1 3 2 1 2 3 2 2 2 1 1</td>
</tr>
<tr>
<td>rs10492938</td>
<td>2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>rs10492937</td>
<td>3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3</td>
</tr>
<tr>
<td>rs7546189</td>
<td>1 2 3 3 1 3 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2</td>
</tr>
<tr>
<td>rs1128474</td>
<td>3 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 2 1 3 3 3</td>
</tr>
</tbody>
</table>

Genotype key: 0 —; 1 AA; 2 AB; 3 BB.
Phase 3 1000Genomes Data

- 84.4 million variants
- 2504 individuals
- 26 populations

www.1000Genomes.org
Whole-genome Sequence Studies

One current study is the NHLBI Trans-Omics for Precision Medicine (TOPMed) project. www.nhlbiwgs.org

In the first data freeze of Phase 1 of this study:

<table>
<thead>
<tr>
<th>Description</th>
<th>Variants Passing Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of SNPs</td>
<td>86,974,704</td>
</tr>
<tr>
<td>Singletons</td>
<td>35,883,567</td>
</tr>
<tr>
<td>% Singletons</td>
<td>41.3%</td>
</tr>
<tr>
<td>Nonsynonymous</td>
<td>599,883</td>
</tr>
<tr>
<td>Singletons</td>
<td>305,479</td>
</tr>
<tr>
<td>% Singletons</td>
<td>50.9%</td>
</tr>
<tr>
<td>Stop Gains</td>
<td>13,436</td>
</tr>
<tr>
<td>Singletons</td>
<td>8,067</td>
</tr>
<tr>
<td>% Singletons</td>
<td>60.0%</td>
</tr>
<tr>
<td># in dbSNP (142)</td>
<td>43,141,344</td>
</tr>
<tr>
<td>% in dbSNP</td>
<td>49.6%</td>
</tr>
</tbody>
</table>

Abecasis et al. 2016. ASHG Poster. Currently 800 million SNVs found from 120,000 whole-genome sequences.
Sampling

Statistical sampling: The variation among repeated samples from the same population is analogous to “fixed” sampling. Inferences can be made about that particular population.

Genetic sampling: The variation among replicate (conceptual) populations is analogous to “random” sampling. Inferences are made to all populations with the same history.
Classical Model

Reference population
(Usually assumed infinite and in equilibrium)

\[ \text{Time 1} \]
\[ \downarrow \]
\[ \text{Population of size } N \]
\[ \downarrow \]
\[ \text{Population of size } N \]
\[ \vdots \]

\[ \text{Time 2} \]
\[ \downarrow \]
\[ \text{Population of size } N \]
\[ \downarrow \]
\[ \text{Population of size } N \]
\[ \vdots \]

\[ \text{Time } t \]
\[ \downarrow \]
\[ \text{Population of size } N \]
\[ \downarrow \]
\[ \text{Population of size } N \]

\[ \text{Sample of size } n \]
\[ \vdots \]
\[ \text{Sample of size } n \]
Coalescent Theory

An alternative framework works with genealogical history of a sample of alleles. There is a tree linking all alleles in a current sample to the “most recent common ancestral allele.” Allelic variation due to mutations since that ancestral allele.

The coalescent approach requires mutation and may be more appropriate for long-term evolution and analyses involving more than one species. The classical approach allows mutation but does not require it: within one species variation among populations may be due primarily to drift.
Probability

Probability provides the language of data analysis.

*Equiprobable outcomes definition:* Probability of event $E$ is number of outcomes favorable to $E$ divided by the total number of outcomes. e.g. Probability of a head $= 1/2$.

*Long-run frequency definition:* If event $E$ occurs $n$ times in $N$ identical experiments, the probability of $E$ is the limit of $n/N$ as $N$ goes to infinity.

*Subjective probability:* Probability is a measure of belief.
First Law of Probability

Law says that probability can take values only in the range zero to one and that an event which is certain has probability one.

\[
\begin{align*}
0 \leq \Pr(E) &\leq 1 \\
\Pr(E|E) &= 1 \text{ for any } E
\end{align*}
\]

i.e. If event \( E \) is true, then it has a probability of 1. For example:

\[
\Pr(\text{Seed is Round}|\text{Seed is Round}) = 1
\]
Second Law of Probability

If $G$ and $H$ are mutually exclusive events, then:

$$\Pr(G \text{ or } H) = \Pr(G) + \Pr(H)$$

For example,

$$\Pr(\text{Round or Wrinkled}) = \Pr(\text{Round}) + \Pr(\text{Wrinkled})$$

More generally, if $E_i, i = 1, \ldots, r$, are mutually exclusive then

$$\Pr(E_1 \text{ or } \ldots \text{ or } E_r) = \Pr(E_1) + \ldots + \Pr(E_r)$$

$$= \sum_i \Pr(E_i)$$
Complementary Probability

If $Pr(E)$ is the probability that $E$ is true then $Pr(\bar{E})$ denotes the probability that $E$ is false. Because these two events are mutually exclusive

$$Pr(E \text{ or } \bar{E}) = Pr(E) + Pr(\bar{E})$$

and they are also exhaustive in that between them they cover all possibilities – one or other of them must be true. So,

$$Pr(E) + Pr(\bar{E}) = 1$$

$$Pr(\bar{E}) = 1 - Pr(E)$$

The probability that $E$ is false is one minus the probability it is true.
Third Law of Probability

For any two events, $G$ and $H$, the third law can be written:

$$\Pr(G \text{ and } H) = \Pr(G) \Pr(H|G)$$

There is no reason why $G$ should precede $H$ and the law can also be written:

$$\Pr(G \text{ and } H) = \Pr(H) \Pr(G|H)$$

For example

$$\Pr(\text{Seed is round } \& \text{ is type AA})$$

$$= \Pr(\text{Seed is round}|\text{Seed is type AA}) \times \Pr(\text{Seed is type AA})$$

$$= 1 \times p_A^2$$
Independent Events

If the information that \( H \) is true does nothing to change uncertainty about \( G \), then

\[
\Pr(G|H) = \Pr(G)
\]

and

\[
\Pr(H \text{ and } G) = \Pr(H) \Pr(G)
\]

Events \( G, H \) are independent.
Law of Total Probability

If $G, H$ are two mutually exclusive and exhaustive events (so that $H = \bar{G} = \text{not} - G$), then for any other event $E$, the law of total probability states that

$$\Pr(E) = \Pr(E|G) \Pr(G) + \Pr(E|H) \Pr(H)$$

This generalizes to any set of mutually exclusive and exhaustive events $\{S_i\}$:

$$\Pr(E) = \sum_i \Pr(E|S_i) \Pr(S_i)$$

For example

$$\Pr(\text{Seed is round}) = \Pr(\text{Round}|\text{Type AA}) \Pr(\text{Type AA})$$
$$+ \Pr(\text{Round}|\text{Type Aa}) \Pr(\text{Type Aa})$$
$$+ \Pr(\text{Round}|\text{Type aa}) \Pr(\text{Type aa})$$
$$= 1 \times p_A^2 + 1 \times 2p_A p_a + 0 \times p_a^2$$
$$= p_A (1 + p_a)$$
Bayes’ Theorem

Bayes’ theorem relates \( \Pr(G|H) \) to \( \Pr(H|G) \):

\[
\Pr(G|H) = \frac{\Pr(GH)}{\Pr(H)}, \text{ from third law}
\]

\[
= \frac{\Pr(H|G) \Pr(G)}{\Pr(H)}, \text{ from third law}
\]

If \( \{G_i\} \) are exhaustive and mutually exclusive, Bayes’ theorem can be written as

\[
\Pr(G_i|H) = \frac{\Pr(H|G_i) \Pr(G_i)}{\sum_i \Pr(H|G_i) \Pr(G_i)}
\]
Bayes’ Theorem Example

Suppose $G$ is event that a man has genotype $A_1A_2$ and $H$ is the event that he transmits allele $A_1$ to his child. Then $\Pr(H|G) = 0.5$.

Now what is the probability that a man has genotype $A_1A_2$ given that he transmits allele $A_1$ to his child?

\[
\Pr(G|H) = \frac{\Pr(H|G) \Pr(G)}{\Pr(H)}
\]

\[
= \frac{0.5 \times 2p_1p_2}{p_1}
\]

\[
= p_2
\]
Mendel’s Data

Model: seed shape governed by gene $A$ with alleles $A, a$:

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AA$</td>
<td>Round</td>
</tr>
<tr>
<td>$Aa$</td>
<td>Round</td>
</tr>
<tr>
<td>$aa$</td>
<td>Wrinkled</td>
</tr>
</tbody>
</table>

Cross two inbred lines: $AA$ and $aa$. All offspring ($F_1$ generation) are $Aa$, and so have round seeds.
**F₂ generation**

Self an \( F_1 \) plant: each allele it transmits is equally likely to be \( A \) or \( a \), and alleles are independent, so for \( F_2 \) generation:

\[
\begin{align*}
\Pr(AA) &= \Pr(A) \Pr(A) = 0.25 \\
\Pr(Aa) &= \Pr(A) \Pr(a) + \Pr(a) \Pr(A) = 0.5 \\
\Pr(aa) &= \Pr(a) \Pr(a) = 0.25
\end{align*}
\]

Probability that an \( F_2 \) seed (observed on \( F_1 \) parental plant) is round:

\[
\begin{align*}
\Pr(\text{Round}) &= \Pr(\text{Round}|AA)\Pr(AA) \\
&\quad + \Pr(\text{Round}|Aa)\Pr(Aa) \\
&\quad + \Pr(\text{Round}|aa)\Pr(aa) \\
&= 1 \times 0.25 + 1 \times 0.5 + 0 \times 0.25 \\
&= 0.75
\end{align*}
\]
What are the proportions of $AA$ and $Aa$ among $F_2$ plants with round seeds? From Bayes’ Theorem the predicted probability of $AA$ genotype, if the seed is round, is

$$\Pr(F_2 = AA | F_2 \text{ Round}) = \frac{\Pr(F_2 \text{ Round} | AA) \Pr(F_2 \text{ AA})}{\Pr(F_2 \text{ round})}$$

$$= \frac{1 \times \frac{1}{4}}{\frac{3}{4}}$$

$$= \frac{1}{3}$$
Seed Characters

As an experimental check on this last result, and therefore on Mendel’s theory, Mendel selfed a round-seeded \( F_2 \) plant and noted the \( F_3 \) seed shape (observed on the \( F_2 \) parental plant).

If all the \( F_3 \) seeds are round, the \( F_2 \) must have been \( AA \). If some \( F_3 \) seed are round and some are wrinkled, the \( F_2 \) must have been \( Aa \). Possible to observe many \( F_3 \) seeds for an \( F_2 \) parental plant, so no doubt that all seeds were round. Data supported theory: one-third of \( F_2 \) plants gave only round seeds and so must have had genotype \( AA \).
## Plant Characters

Model for stem length is

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG</td>
<td>Long</td>
</tr>
<tr>
<td>Gg</td>
<td>Long</td>
</tr>
<tr>
<td>gg</td>
<td>Short</td>
</tr>
</tbody>
</table>

To check this model it is necessary to grow the $F_3$ seed to observe the $F_3$ stem length.
$F_2$ Plant Character

Mendel grew only 10 $F_3$ seeds per $F_2$ parent. If all 10 seeds gave long stems, he concluded they were all $GG$, and $F_2$ parent was $GG$. This could be wrong. The probability of a $Gg$ $F_2$ plant giving 10 long-stemmed $F_3$ offspring ($GG$ or $Gg$), and therefore wrongly declared to be homozygous $GG$ is $(3/4)^{10} = 0.0563$. 
Fisher’s 1936 Criticism

The probability that a long-stemmed $F_2$ plant is declared to be homozygous (event $V$) is

$$
Pr(V) = Pr(V|U) Pr(U) + Pr(V|\bar{U}) Pr(\bar{U})
= 1 \times \frac{1}{3} + 0.0563 \times \frac{2}{3}
= 0.3709
\neq \frac{1}{3}
$$

where $U$ is the event that a long-stemmed $F_2$ is actually homozygous and $\bar{U}$ is the event that it is actually heterozygous.

Fisher claimed Mendel’s data closer to the 0.3333 probability appropriate for seed shape than to the correct 0.3709 value. Mendel’s experiments were “a carefully planned demonstration of his conclusions.”
Weldon’s 1902 Doubts

In Biometrika, Weldon said:

“Here are seven determinations of a frequency which is said to obey the law of Chance. Only one determination has a deviation from the hypothetical frequency greater than the probable error of the determination, and one has a deviation sensible equal to the probable error; so that a discrepancy between the hypothesis and the observations which is equal to or greater than the probable error occurs twice out of seven times, and deviations much greater than the probable error do not occur at all. These results then accord so remarkably with Mendel’s summary of them that if they were repeated a second time, under similar conditions and on a similar scale, the chance that the agreement between observation and hypothesis would be worse than that actually obtained is about 16 to 1.”

“Run Mendel’s experiments again at the same scale, Weldon reckoned, and the chance of getting worse results is 16 to 1.” Radick, Science 350:159-160, 2015.
Edwards’ 1986 Criticism

Mendel had 69 comparisons where the expected ratios were correct. Each set of data can be tested with a chi-square test:

\[
\begin{array}{cccc}
\text{Category 1} & \text{Category 2} & \text{Total} \\
\text{Observed (o)} & a & n-a & n \\
\text{Expected (e)} & b & n-b & n \\
\end{array}
\]

\[
X^2 = \frac{(a - b)^2}{b} + \frac{[(n - a) - (n - b)]^2}{(n - b)}
\]

\[
= \frac{n(a - b)^2}{b(n - b)}
\]
Edwards’ Criticism

If the hypothesis giving the expected values is true, the $X^2$ values follow a chi-square distribution, and the $X$ values follow a normal distribution. Edwards claimed Mendel’s values were too small – not as many large values as would be expected by chance.
Recent Discussions


Weeden NF. 2016. Are Mendel’s Data Reliable? The Perspective of a Pea Geneticist. Journal of Heredity 107:635-646. “Mendel’s article is probably best regarded as his attempt to present his model in a simple and convincing format with a minimum of additional details that might obscure his message.”
“According to Fisher (1959), if the null hypothesis is rejected, ‘The force with which such a conclusion is supported is that of the simple disjunction: Either an exceptionally rare chance has occurred, or the theory of random distribution is not true’ (p. 39). Fisher’s theory does not permit one to say which of the two possibilities is the case, nor to give a probability for it. Furthermore, if significance is not achieved, nothing can be concluded. In order for the probability distribution that forms the basis of a chi-square test to be valid, the hypothesis to be tested must be declared before the data are examined.

(continued on next slide)
2018 paper

Viewed in this light, there are several gaps between Fisher’s calculations and his conclusion. Fisher is rejecting the multinomial null hypothesis if the chi-square is too small, which would be legitimate if the hypothesis test were declared before Weldon pointed the way, or if Fisher routinely used a two-tailed chi-square test. Neither is the case. And one still has Fisher’s disjunction to contend with. Nonetheless, Fisher is a superb data-analyst, and we should not be interpreted as challenging his conclusion.”

ALLELE FREQUENCIES
## Properties of Estimators

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency</td>
<td>Increasing accuracy as sample size increases</td>
</tr>
<tr>
<td>Unbiasedness</td>
<td>Expected value is the parameter</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Smallest variance</td>
</tr>
<tr>
<td>Sufficiency</td>
<td>Contains all the information in the data about parameter</td>
</tr>
</tbody>
</table>
Binomial Distribution

Most population genetic data consists of numbers of observations in some categories. The values and frequencies of these counts form a *distribution*.

Toss a coin \( n \) times, and note the number of heads. There are \((n+1)\) outcomes, and the number of times each outcome is observed in many sets of \( n \) tosses gives the sampling distribution. Or: sample \( n \) alleles from a population and observe \( x \) copies of type \( A \).
Binomial distribution

If every toss has the same chance $p$ of giving a head:

Probability of $x$ heads in a row is

$$p \times p \times \ldots \times p = p^x$$

Probability of $n - x$ tails in a row is

$$(1 - p) \times (1 - p) \times \ldots \times (1 - p) = (1 - p)^{n-x}$$

The number of ways of ordering $x$ heads and $n - x$ tails among $n$ outcomes is $n!/x!(n - x)!$.

The binomial probability of $x$ successes in $n$ trials is

$$\Pr(x|p) = \frac{n!}{x!(n - x)!} p^x (1 - p)^{n-x}$$
Binomial Likelihood

The quantity $\Pr(x|p)$ is the probability of the data, $x$ successes in $n$ trials, when each trial has probability $p$ of success.

The same quantity, written as $L(p|x)$, is the likelihood of the parameter, $p$, when the value $x$ has been observed. The terms that do not involve $p$ are not needed, so

$$L(p|x) \propto p^x (1 - p)^{(n-x)}$$

Each value of $x$ gives a different likelihood curve, and each curve points to a $p$ value with maximum likelihood. This leads to maximum likelihood estimation.
Likelihood $L(p|x, n = 4)$
**Binomial Mean**

If there are \( n \) trials, each of which has probability \( p \) of giving a success, the *mean* or the *expected number* of successes is \( np \).

The *sample proportion* of successes is

\[
\tilde{p} = \frac{x}{n}
\]

(This is also the maximum likelihood estimate of \( p \).)

The expected, or *mean*, value of \( \tilde{p} \) is \( p \).

\[
\mathcal{E}(\tilde{p}) = p
\]
Binomial Variance

The expected value of the squared difference between the number of successes and its mean, \((x - np)^2\), is \(np(1 - p)\). This is the variance of the number of successes in \(n\) trials, and indicates the spread of the distribution.

The variance of the sample proportion \(\tilde{p}\) is

\[
\text{Var}(\tilde{p}) = \frac{p(1 - p)}{n}
\]
Normal Approximation

Provided $np$ is not too small (e.g. not less than 5), the binomial distribution can be approximated by the normal distribution with the same mean and variance. In particular:

$$\tilde{p} \sim N \left( p, \frac{p(1-p)}{n} \right)$$

To use the normal distribution in practice, change to the standard normal variable $z$ with a mean of 0, and a variance of 1:

$$z = \frac{\tilde{p} - p}{\sqrt{p(1-p)/n}}$$

For a standard normal, 95% of the values lie between $\pm 1.96$. The normal approximation to the binomial therefore implies that 95% of the values of $\tilde{p}$ lie in the range

$$p \pm 1.96\sqrt{p(1-p)/n}$$
Confidence Intervals

A 95% confidence interval is a variable quantity. It has endpoints which vary with the sample. Expect that 95% of samples will lead to an interval that includes the unknown true value \( p \).

The standard normal variable \( z \) has 95% of its values between \(-1.96\) and \(+1.96\). This suggests that a 95% confidence interval for the binomial parameter \( p \) is

\[
\tilde{p} \pm 1.96 \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n}}
\]
Confidence Intervals

For samples of size 10, the 11 possible confidence intervals are:

<table>
<thead>
<tr>
<th>( \hat{p} )</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0 ± 0.00</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1 ± 2\sqrt{0.009}</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2 ± 2\sqrt{0.016}</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3 ± 2\sqrt{0.021}</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4 ± 2\sqrt{0.024}</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5 ± 2\sqrt{0.025}</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6 ± 2\sqrt{0.024}</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7 ± 2\sqrt{0.021}</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8 ± 2\sqrt{0.016}</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9 ± 2\sqrt{0.009}</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0 ± 0.00</td>
</tr>
</tbody>
</table>

Can modify interval a little by extending it by the “continuity correction” ±1/2n in each direction.
Confidence Intervals

To be 95% sure that the estimate is no more than 0.01 from the true value, $1.96 \sqrt{p(1-p)/n}$ should be less than 0.01. The widest confidence interval is when $p = 0.5$, and then need

$$0.01 \geq 1.96 \sqrt{0.5 \times 0.5/n}$$

which means that $n \geq 10,000$. For a width of 0.03 instead of 0.01, $n \approx 1,000$.

If the true value of $p$ was about 0.05, however,

$$0.01 \geq 2 \sqrt{0.05 \times 0.95/n}$$

$$n \geq 1,900 \approx 2,000$$
Exact Confidence Intervals: One-sided

The normal-based confidence intervals are constructed to be symmetric about the sample value, unless the interval goes outside the interval from 0 to 1. They are therefore less satisfactory the closer the true value is to 0 or 1.

More accurate confidence limits follow from the binomial distribution exactly. For events with low probabilities \( p \), how large could \( p \) be for there to be at least a 5% chance of seeing no more than \( x \) (i.e. 0, 1, 2, \ldots \( x \)) occurrences of that event among \( n \) events. If this upper bound is \( p_U \),

\[
\sum_{k=0}^{x} \Pr(k) \geq 0.05
\]

\[
\sum_{k=0}^{x} \binom{n}{k} p_U^k (1 - p_U)^{n-k} \geq 0.05
\]

If \( x = 0 \), then \( (1 - p_U)^n \geq 0.05 \) or \( p_U \leq 1 - 0.05^{1/n} \) and this is 0.0295 if \( n = 100 \). More generally \( p_U \approx 3/n \) when \( x = 0 \).
Exact Confidence Intervals: Two-sided

Now want to know how large \( p \) could be for there to be at least a 2.5% chance of seeing no more than \( x \) (i.e. 0, 1, 2 \ldots x) occurrences, and in knowing how small \( p \) could be for there to be at least a 2.5% chance of seeing at least \( x \) (i.e. \( x, x+1, x+2, \ldots n \)) occurrences then we need

\[
\sum_{k=0}^{x} \binom{n}{k} p_U^k (1 - p_U)^{n-k} \geq 0.025
\]

\[
\sum_{k=x}^{n} \binom{n}{k} p_L^k (1 - p_L)^{n-k} \geq 0.025
\]

If \( x = 0 \), then \((1 - p_U) \geq 0.025^{1/n}\) and this gives \( p_U \leq 0.036 \) when \( n = 100 \).

If \( x = n \), then \( p_L \geq 0.975^{1/n} \) and this gives \( p_L \geq 0.964 \) when \( n = 100 \).
Bootstrapping

An alternative method for constructing confidence intervals uses *numerical resampling*. A set of samples is drawn, with replacement, from the original sample to mimic the variation among samples from the original population. Each new sample is the same size as the original sample, and is called a *bootstrap sample*.

The middle 95% of the sample values \( \tilde{p} \) from a large number of bootstrap samples provides a 95% confidence interval.
Multinomial Distribution

Toss two coins \( n \) times. For each double toss, the probabilities of the three outcomes are:

- 2 heads \( p_{HH} = 1/4 \)
- 1 head, 1 tail \( p_{HT} = 1/2 \)
- 2 tails \( p_{TT} = 1/4 \)

The probability of \( x \) lots of 2 heads is \( (p_{HH})^x \), etc.

The numbers of ways of ordering \( x, y, z \) occurrences of the three outcomes is \( n!/[x!y!z!] \) where \( n = x + y + z \).

The multinomial probability for \( x \) of \( HH \), and \( y \) of \( HT \) or \( TH \) and \( z \) of \( TT \) in \( n \) trials is:

\[
\Pr(x, y, z) = \frac{n!}{x!y!z!} (p_{HH})^x (p_{HT})^y (p_{TT})^z
\]
Multinomial Variances and Covariances

If \( \{p_i\} \) are the probabilities for a series of categories, the sample proportions \( \tilde{p}_i \) from a sample of \( n \) observations have these properties:

\[
\begin{align*}
\mathcal{E}(\tilde{p}_i) &= p_i \\
\text{Var}(\tilde{p}_i) &= \frac{1}{n}p_i(1-p_i) \\
\text{Cov}(\tilde{p}_i, \tilde{p}_j) &= -\frac{1}{n}p_ip_j, \; i \neq j
\end{align*}
\]

The covariance is defined as \( \mathcal{E}[(\tilde{p}_i - p_i)(\tilde{p}_j - p_j)] \).

For the sample counts:

\[
\begin{align*}
\mathcal{E}(n_i) &= np_i \\
\text{Var}(n_i) &= np_i(1-p_i) \\
\text{Cov}(n_i, n_j) &= -np_ip_j, \; i \neq j
\end{align*}
\]
Allele Frequency Sampling Distribution

If a locus has alleles $A$ and $a$, in a sample of size $n$ the allele counts are sums of genotype counts:

\[
\begin{align*}
n &= n_{AA} + n_{Aa} + n_{aa} \\
n_A &= 2n_{AA} + n_{Aa} \\
n_a &= 2n_{aa} + n_{Aa} \\
2n &= n_A + n_a
\end{align*}
\]

Genotype counts in a random sample are multinomially distributed. What about allele counts? Approach this question by calculating variance of $n_A$. 
Within-population Variance

\[
\text{Var}(n_A) = \text{Var}(2n_{AA} + n_{Aa})
\]

\[
= \text{Var}(2n_{AA}) + 2\text{Cov}(2n_{AA}, n_{Aa}) + \text{Var}(n_{Aa})
\]

\[
= 2np_A(1 - p_A) + 2nP_{AA} - p_A^2
\]

This is not the same as the binomial variance \(2np_A(1 - p_A)\) unless \(P_{AA} = p_A^2\). In general, the allele frequency distribution is not binomial.

The variance of the sample allele frequency \(\tilde{p}_A = n_A/(2n)\) can be written as

\[
\text{Var}(\tilde{p}_A) = \frac{p_A(1 - p_A)}{2n} + \frac{P_{AA} - p_A^2}{2n}
\]
Within-population Variance

It is convenient to reparameterize genotype frequencies with the (within-population) inbreeding coefficient $f$:

$$
\begin{align*}
P_{AA} &= p_A^2 + fp_A(1 - p_A) \\
P_{Aa} &= 2p_Ap_a - 2fp_Ap_a \\
P_{aa} &= p_a^2 + fp_a(1 - p_a)
\end{align*}
$$

Then the variance can be written as

$$
\text{Var}(\tilde{p}_A) = \frac{p_A(1 - p_A)(1 + f)}{2n}
$$

This variance is different from the binomial variance of $p_A(1 - p_A)/2n$. 


Bounds on $f$

Since

\[ p_A \geq P_{AA} = p_a^2 + f p_A (1 - p_A) \geq 0 \]
\[ p_a \geq P_{aa} = p_a^2 + f p_a (1 - p_a) \geq 0 \]

there are bounds on $f$:

\[ -\frac{p_A}{1 - p_A} \leq f \leq 1 \]
\[ -\frac{p_a}{1 - p_a} \leq f \leq 1 \]

or

\[ \max \left( -\frac{p_A}{p_a}, -\frac{p_a}{p_A} \right) \leq f \leq 1 \]

This range of values is $[-1,1]$ when $p_A = p_a$. 
Indicator Variables

A very convenient way to derive many statistical genetic results is to define an indicator variable $x_{ij}$ for allele $j$ in individual $i$:

$$x_{ij} = \begin{cases} 
1 & \text{if allele is } A \\
0 & \text{if allele is not } A 
\end{cases}$$

Then

$$\mathcal{E}(x_{ij}) = p_A$$
$$\mathcal{E}(x_{ij}^2) = p_A$$
$$\mathcal{E}(x_{ij}x_{ij'}) = P_{AA}$$

If there is random sampling, individuals are independent, and

$$\mathcal{E}(x_{ij}x_{i'j'}) = \mathcal{E}(x_{ij})\mathcal{E}(x_{i'j'}) = p_A^2$$

These expectations are the averages of values from many samples from the same population.
Intraclass Correlation

The inbreeding coefficient is the correlation of the indicator variables for the two alleles $j, j'$ at a locus carried by an individual $i$. This is because:

\[
\text{Var}(x_{ij}) = \mathcal{E}(x_{ij}^2) - [\mathcal{E}(x_{ij})]^2 = p_A(1 - p_A) = \text{Var}(x_{ij'}), \; j \neq j'
\]

and

\[
\text{Cov}(x_{ij}, x_{ij'}) = \mathcal{E}(x_{ij}x_{ij'}) - [\mathcal{E}(x_{ij})][\mathcal{E}(x_{ij'})], \; j \neq j' = P_{AA} - p_A^2 = fp_A(1 - p_A)
\]

so

\[
\text{Corr}(x_{ij}, x_{ij'}) = \frac{\text{Cov}(x_{ij}, x_{ij'})}{\sqrt{\text{Var}(x_{ij})\text{Var}(x_{ij'})}} = f
\]
Maximum Likelihood Estimation: Binomial

For binomial sample of size $n$, the likelihood of $p_A$ for $n_A$ alleles of type $A$ is

$$L(p_A | n_A) = C(p_A)^{n_A}(1 - p_A)^{n - n_A}$$

and is maximized when

$$\frac{\partial L(p_A | n_A)}{\partial p_A} = 0 \quad \text{or when} \quad \frac{\partial \ln L(p_A | n_A)}{\partial p_A} = 0$$

Now

$$\ln L(p_A | n_A) = \ln C + n_A \ln(p_A) + (n - n_A) \ln(1 - p_A)$$

so

$$\frac{\partial \ln L(p_A | n_A)}{\partial p_A} = \frac{n_A}{p_A} - \frac{n - n_A}{1 - p_A}$$

and this is zero when $p_A = \hat{p}_A = n_A/n$. 
Maximum Likelihood Estimation: Multinomial

If \( \{n_i\} \) are multinomial with parameters \( n \) and \( \{Q_i\} \), then the MLE’s of \( Q_i \) are \( n_i/n \). This will always hold for genotype proportions, but not always for allele proportions.

For two alleles, the MLE’s for genotype proportions are:

\[
\hat{P}_{AA} = \frac{n_{AA}}{n} \\
\hat{P}_{Aa} = \frac{n_{Aa}}{n} \\
\hat{P}_{aa} = \frac{n_{aa}}{n}
\]

Does this lead to estimates of allele proportions and the within-population inbreeding coefficient?

\[
P_{AA} = p_A^2 + fp_A(1 - p_A) \\
P_{Aa} = 2p_A(1 - p_A) - 2fp_A(1 - p_A) \\
P_{aa} = (1 - p_A)^2 + fp_A(1 - p_A)
\]
Maximum Likelihood Estimation

The likelihood function for $p_A$, $f$ is

$$L(p_A, f) = \frac{n!}{n_{AA}!n_{Aa}!n_{aa}!}[p_A^2 + p_A(1 - p_A)f]^{n_{AA}}$$

$$\times [2p_A(1 - p_A)f]^{n_{Aa}}[(1 - p_A)^2 + p_A(1 - p_A)f]^{n_{aa}}$$

and it is difficult to find, analytically, the values of $p_A$ and $f$ that maximize this function or its logarithm.

There is an alternative way of finding maximum likelihood estimates in this case: equating the observed and expected values of the genotype frequencies.
Bailey’s Method

Because the number of parameters (2) equals the number of degrees of freedom in this case, we can just equate observed and expected (using the estimates of $p_A$ and $f$) genotype proportions

\[
\begin{align*}
\frac{n_{AA}}{n} &= \hat{p}_A^2 + \hat{f}\hat{p}_A(1 - \hat{p}_A) \\
\frac{n_{Aa}}{n} &= 2\hat{p}_A(1 - \hat{p}_A) - 2\hat{f}\hat{p}_A(1 - \hat{p}_A) \\
\frac{n_{aa}}{n} &= (1 - \hat{p}_A)^2 + \hat{f}\hat{p}_A(1 - \hat{p}_A)
\end{align*}
\]

Solving these equations (e.g. by adding the first equation to half the second equation to give solution for $\hat{p}_A$ and then substituting that into one equation):

\[
\hat{p}_A = \frac{2n_{AA} + n_{Aa}}{2n} = \tilde{p}_A
\]

\[
\hat{f} = 1 - \frac{n_{Aa}}{2n\tilde{p}_A(1 - \tilde{p}_A)} = 1 - \frac{\tilde{P}_{Aa}}{2\tilde{p}_A\tilde{p}_a}
\]
Three-allele Case

With three alleles, there are six genotypes and 5 df. To use Bailey’s method, would need five parameters: 2 allele frequencies and 3 inbreeding coefficients:

\[
\begin{align*}
P_{11} &= p_1^2 + f_{12}p_1p_2 + f_{13}p_1p_3 \\
P_{12} &= 2p_1p_2 - 2f_{12}p_1p_2 \\
P_{22} &= p_2^2 + f_{12}p_1p_2 + f_{23}p_2p_3 \\
P_{13} &= 2p_1p_3 - 2f_{13}p_1p_3 \\
P_{23} &= 2p_2p_3 - 2f_{23}p_2p_3 \\
P_{33} &= p_3^2 + f_{13}p_1p_3 + f_{23}p_2p_3
\end{align*}
\]

We would generally prefer to have only one inbreeding coefficient \( f \). It is a difficult numerical problem to find the MLE for \( f \).
Method of Moments

An alternative to maximum likelihood estimation is the method of moments (MoM) where observed values of statistics are set equal to their expected values. In general, this does not lead to unique estimates or to estimates with variances as small as those for maximum likelihood. (Bailey’s method is for the special case where the MLEs are also MoM estimates.)
Method of Moments

For the inbreeding coefficient at loci with \( m \) alleles, two different MoM estimates are (for large sample sizes)

\[
\hat{f}_W = \frac{\sum_{u=1}^{m} (\tilde{P}_{uu} - \tilde{p}_u^2)}{\sum_{u=1}^{m} \tilde{p}_u (1 - \tilde{p}_u)}
\]

\[
\hat{f}_H = \frac{1}{m - 1} \sum_{u=1}^{m} \left( \frac{\tilde{P}_{uu} - \tilde{p}_u^2}{\tilde{p}_u} \right)
\]

These both have low bias. Their variances depend on the value of \( f \).

For loci with two alleles, \( m = 2 \), the two moment estimates are equal to each other and to the maximum likelihood estimate:

\[
\hat{f}_W = \hat{f}_H = 1 - \frac{\tilde{P}_{Aa}}{2\tilde{p}_A\tilde{p}_a}
\]
MLE for Recessive Alleles

Suppose allele $a$ is recessive to allele $A$. If there is Hardy-Weinberg equilibrium, the likelihood for the two phenotypes is

$$L(p_a) = (1 - p_a^2)^{n-n_{aa}}(p_a^2)^{n_{aa}}$$

$$\ln[L(p_a)] = (n - n_{aa}) \ln(1 - p_a^2) + 2n_{aa} \ln(p_a)$$

where there are $n_{aa}$ individuals of type $aa$ and $n - n_{aa}$ of type $AA + Aa$. Differentiating wrt $p_a$:

$$\frac{\partial \ln L(p_a)}{\partial p_a} = -\frac{2p_a(n - n_{aa})}{1 - p_a^2} + \frac{2n_{aa}}{p_a}$$

Setting this to zero leads to an equation that can be solved explicitly: $p_a^2 = n_{aa}/n$. No need for iteration.
EM Algorithm for Recessive Alleles

An alternative way of finding maximum likelihood estimates when there are “missing data” involves *Estimation* of the missing data and then *Maximization* of the likelihood. For a locus with allele $A$ dominant to $a$ the missing information is the frequencies $(1 - p_a)^2$ of $AA$, and $2p_a(1 - p_a)$ of $Aa$ genotypes. Only the joint frequency $(1 - p_a^2)$ of $AA + Aa$ can be observed.

**Estimate** the missing genotype counts (assuming independence of alleles) as proportions of the total count of dominant phenotypes:

\[
\begin{align*}
n_{AA} &= \frac{(1 - p_a)^2}{1 - p_a^2}(n - n_{aa}) = \frac{(1 - p_a)(n - n_{aa})}{(1 + p_a)} \\
n_{Aa} &= \frac{2p_a(1 - p_a)}{1 - p_a^2}(n - n_{aa}) = \frac{2p_a(n - n_{aa})}{(1 + p_a)}
\end{align*}
\]
EM Algorithm for Recessive Alleles

Maximize the likelihood (using Bailey’s method):

\[
\hat{p}_a = \frac{n_{Aa} + 2n_{aa}}{2n} = \frac{1}{2n} \left( \frac{2p_a(n - n_{aa})}{1 + p_a} + 2n_{aa} \right) = \frac{2(n p_a + n_{aa})}{2n(1 + p_a)}
\]

An initial estimate \( p_a \) is put into the right hand side to give an updated estimated \( \hat{p}_a \) on the left hand side. This is then put back into the right hand side to give an iterative equation for \( p_a \).

This procedure also has explicit solution \( \hat{p}_a = \sqrt{\frac{n_{aa}}{n}} \).
## EM Algorithm for Two Loci

For two loci with two alleles each, the ten two-locus frequencies are:

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Actual</th>
<th>Expected</th>
<th>Genotype</th>
<th>Actual</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB/AB)</td>
<td>(P_{AB}^{AB})</td>
<td>(p_{AB}^2)</td>
<td>(AB/Ab)</td>
<td>(P_{Ab}^{AB})</td>
<td>(2p_{AB}p_{Ab})</td>
</tr>
<tr>
<td>(AB/aB)</td>
<td>(P_{aB}^{AB})</td>
<td>(2p_{AB}p_{aB})</td>
<td>(AB/ab)</td>
<td>(P_{ab}^{AB})</td>
<td>(2p_{AB}p_{ab})</td>
</tr>
<tr>
<td>(Ab/Ab)</td>
<td>(P_{Ab}^{Ab})</td>
<td>(p_{Ab}^2)</td>
<td>(Ab/aB)</td>
<td>(P_{aB}^{Ab})</td>
<td>(2p_{Ab}p_{aB})</td>
</tr>
<tr>
<td>(Ab/ab)</td>
<td>(P_{ab}^{Ab})</td>
<td>(2p_{Ab}p_{ab})</td>
<td>(aB/aB)</td>
<td>(P_{aB}^{ab})</td>
<td>(p_{aB}^2)</td>
</tr>
<tr>
<td>(aB/ab)</td>
<td>(P_{ab}^{aB})</td>
<td>(2p_{aB}p_{ab})</td>
<td>(ab/ab)</td>
<td>(P_{ab}^{ab})</td>
<td>(p_{ab}^2)</td>
</tr>
</tbody>
</table>
EM Algorithm for Two Loci

Gamete frequencies are marginal sums:

\[
p_{AB} = P_{AB} + \frac{1}{2}(P_{Ab} + P_{aB} + P_{ab})
\]
\[
p_{Ab} = P_{Ab} + \frac{1}{2}(P_{AB} + P_{aB} + P_{Ab})
\]
\[
p_{aB} = P_{aB} + \frac{1}{2}(P_{AB} + P_{Ab} + P_{AB})
\]
\[
p_{ab} = P_{ab} + \frac{1}{2}(P_{Ab} + P_{aB} + P_{AB})
\]

Can arrange gamete frequencies as two-way table to show that only one of them is unknown when the allele frequencies are known:

<table>
<thead>
<tr>
<th>p_{AB}</th>
<th>p_{Ab}</th>
<th>p_{A}</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{aB}</td>
<td>p_{ab}</td>
<td>p_{a}</td>
</tr>
<tr>
<td>p_{B}</td>
<td>p_{b}</td>
<td>1</td>
</tr>
</tbody>
</table>
EM Algorithm for Two Loci

The two double heterozygote frequencies \( P_{ab}^{AB}, P_{aB}^{AB} \) are “missing data.”

Assume initial value of \( p_{AB} \) and \textit{Estimate} the missing counts as proportions of the total count of double heterozygotes:

\[
\begin{align*}
    n_{ab}^{AB} &= \frac{2p_{AB}p_{ab}}{2p_{AB}p_{ab} + 2p_{Ab}p_{aB}}n_{AaBb} \\
    n_{aB}^{Ab} &= \frac{2p_{Ab}p_{aB}}{2p_{AB}p_{ab} + 2p_{Ab}p_{aB}}n_{AaBb}
\end{align*}
\]

and then \textit{Maximize} the likelihood by setting

\[
\begin{align*}
    p_{AB} &= \frac{1}{2n} \left( 2n_{AB}^{AB} + n_{Ab}^{AB} + n_{aB}^{AB} + n_{ab}^{AB} \right) \\
    \text{or} \\
    n_{AB} &= 2n_{AB}^{AB} + n_{Ab}^{AB} + n_{aB}^{AB} + n_{ab}^{AB}
\end{align*}
\]
Example

As an example, consider the data

<table>
<thead>
<tr>
<th></th>
<th>BB</th>
<th>Bb</th>
<th>bb</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>$n_{AABB} = 5$</td>
<td>$n_{AABb} = 3$</td>
<td>$n_{AAbb} = 2$</td>
<td>$n_{AA} = 10$</td>
</tr>
<tr>
<td>Aa</td>
<td>$n_{AaBB} = 3$</td>
<td>$n_{AaBb} = 2$</td>
<td>$n_{Aabb} = 0$</td>
<td>$n_{Aa} = 5$</td>
</tr>
<tr>
<td>aa</td>
<td>$n_{aaBB} = 0$</td>
<td>$n_{aaBb} = 0$</td>
<td>$n_{aabb} = 0$</td>
<td>$n_{aa} = 0$</td>
</tr>
<tr>
<td>Total</td>
<td>$n_{BB} = 8$</td>
<td>$n_{Bb} = 5$</td>
<td>$n_{bb} = 2$</td>
<td>$n = 15$</td>
</tr>
</tbody>
</table>

There is one unknown gamete count $x = n_{AB}$ for $AB$:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>b</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$n_{AB} = x$</td>
<td>$n_{Ab} = 25 - x$</td>
<td>$n_{A} = 25$</td>
</tr>
<tr>
<td>a</td>
<td>$n_{aB} = 21 - x$</td>
<td>$n_{ab} = x - 16$</td>
<td>$n_{a} = 5$</td>
</tr>
<tr>
<td>Total</td>
<td>$n_{B} = 21$</td>
<td>$n_{b} = 9$</td>
<td>$2n = 30$</td>
</tr>
</tbody>
</table>

$21 \geq x \geq 16$
Example

EM iterative equation:

\[ x' = 2n_{AABB} + n_{AABb} + n_{AaBB} + n_{AB/ab} \]

\[ = 2n_{AABB} + n_{AABb} + n_{AaBB} + \frac{2p_{ABp_{ab}}}{2p_{AB}p_{ab} + 2p_{Ab}p_{aB}}n_{AaBb} \]

\[ = 10 + 3 + 3 + 2 \times \frac{2x(x - 16)}{2x(x - 16) + 2(25 - x)(21 - x)} \]

\[ = 16 + \frac{x(x - 16)}{x(x - 16) + (25 - x)(21 - x)} \]

In this case note that if \( x = 16 \) then \( x' = 16 \) so this is the MLE.
Example

If we did not recognize the solution, a good starting value would assume independence of $A$ and $B$ alleles: \[ x = 2n \times p_A \times p_B = (25 \times 21/30) = 17.5. \]

Successive iterates are:

<table>
<thead>
<tr>
<th>Iterate</th>
<th>$x$ value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17.5000</td>
</tr>
<tr>
<td>1</td>
<td>17.0000</td>
</tr>
<tr>
<td>2</td>
<td>16.6939</td>
</tr>
<tr>
<td>3</td>
<td>16.4893</td>
</tr>
<tr>
<td>4</td>
<td>16.3473</td>
</tr>
<tr>
<td>5</td>
<td>16.2472</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

The solution is actually $x = 16$. This particular example does not have convergence to the MLE for some starting values for $x$. 
ALLELIC ASSOCIATION
Hardy-Weinberg Law

For a random mating population, expect that genotype frequencies are products of allele frequencies.

For a locus with two alleles, $A, a$:

\[
\begin{align*}
P_{AA} &= (p_A)^2 \\
P_{Aa} &= 2p_Ap_a \\
P_{aa} &= (p_a)^2
\end{align*}
\]

These are also the results of setting the inbreeding coefficient $f$ to zero.

For a locus with several alleles $A_i$:

\[
\begin{align*}
P_{A_iA_i} &= (p_{A_i})^2 \\
P_{A_iA_j} &= 2p_{A_i}p_{A_j}
\end{align*}
\]
Inference about HWE

Departures from HWE can be described by the within-population inbreeding coefficient $f$. This has an MLE that can be written as

$$\hat{f} = 1 - \frac{\tilde{P}_{Aa}}{2\tilde{p}_A\tilde{p}_a} = \frac{4n_{AA}n_{aa} - n_{Aa}^2}{(2n_{AA} + n_{Aa})(2n_{aa} + n_{Aa})}$$

and we can use “Delta method” to find

$$\mathcal{E}(\hat{f}) = f$$
$$\text{Var}(\hat{f}) \approx \frac{1}{2n_pA_pA_a}(1 - f)[2p_Ap_a(1 - f)(1 - 2f) + f(2 - f)]$$

If $\hat{f}$ is assumed to be normally distributed then, $(\hat{f} - f)/\sqrt{\text{Var}(\hat{f})} \sim N(0, 1)$. When $H_0$ is true, the square of this quantity has a chi-square distribution.
Inference about HWE

Since $\text{Var}(\hat{f}) = 1/n$ when $f = 0$:

$$X^2 = \left( \frac{\hat{f} - f}{\sqrt{\text{Var}(\hat{f})}} \right)^2$$

$$= \frac{\hat{f}^2}{1/n}$$

$$= n\hat{f}^2$$

is appropriate for testing $H_0 : f = 0$. When $H_0$ is true, $X^2 \sim \chi^2_{(1)}$. Reject HWE if $X^2 > 3.84$. 
Significance level of HWE test

The area under the chi-square curve to the right of $X^2 = 3.84$ is the probability of rejecting HWE when HWE is true. This is the significance level of the test.
Goodness-of-fit Test

An alternative, but equivalent, test is the goodness-of-fit test.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Observed</th>
<th>Expected</th>
<th>( \frac{(\text{Obs.} - \text{Exp.})^2}{\text{Exp.}} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>( n_{AA} )</td>
<td>( n\tilde{p}_A^2 )</td>
<td>( n\tilde{p}_a \tilde{f}^2 )</td>
</tr>
<tr>
<td>Aa</td>
<td>( n_{Aa} )</td>
<td>( 2n\tilde{p}_A\tilde{p}_a )</td>
<td>( 2n\tilde{p}_A\tilde{p}_a \tilde{f}^2 )</td>
</tr>
<tr>
<td>aa</td>
<td>( n_{aa} )</td>
<td>( n\tilde{p}_a^2 )</td>
<td>( n\tilde{p}_A^2 \tilde{f}^2 )</td>
</tr>
</tbody>
</table>

The test statistic is

\[
X^2 = \sum \frac{(\text{Obs.} - \text{Exp.})^2}{\text{Exp.}} = n\tilde{f}^2
\]
Goodness-of-fit Test

Does a sample of 6 $AA$, 3 $Aa$, 1 $aa$ support Hardy-Weinberg?

First need to estimate allele frequencies:

\[
\tilde{p}_A = \tilde{P}_{AA} + \frac{1}{2}\tilde{P}_{Aa} = 0.75
\]

\[
\tilde{p}_a = \tilde{P}_{aa} + \frac{1}{2}\tilde{P}_{Aa} = 0.25
\]

Then form “expected” counts:

\[
n_{AA} = n(\tilde{p}_A)^2 = 5.625
\]
\[
n_{Aa} = 2n\tilde{p}_A\tilde{p}_a = 3.750
\]
\[
n_{aa} = n(\tilde{p}_a)^2 = 0.625
\]
**Goodness-of-fit Test**

Perform the chi-square test:

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Observed</th>
<th>Expected</th>
<th>((\text{Obs.} - \text{Exp.})^2/\text{Exp.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>6</td>
<td>5.625</td>
<td>0.025</td>
</tr>
<tr>
<td>Aa</td>
<td>3</td>
<td>3.750</td>
<td>0.150</td>
</tr>
<tr>
<td>aa</td>
<td>1</td>
<td>0.625</td>
<td>0.225</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>10</strong></td>
<td><strong>10</strong></td>
<td><strong>0.400</strong></td>
</tr>
</tbody>
</table>

Note that \(\hat{f} = 1 - 0.3/(2 \times 0.75 \times 0.25) = 0.2\) and \(X^2 = nf^2\).
Sample size determination

Although Fisher’s exact test (below) is generally preferred for small samples, the normal or chi-square test has the advantage of simplifying power calculations.

When the Hardy-Weinberg hypothesis is not true, the test statistic $n\hat{p}^2$ has a non-central chi-square distribution with one degree of freedom (df) and non-centrality parameter $\lambda = nf^2$. To reach 90% power with a 5% significance level, for example, it is necessary that $\lambda \geq 10.51$.

```r
> pchisq(3.84,1,0)
[1] 0.9499565
> pchisq(3.84,1,10.51)
[1] 0.09986489
> qchisq(0.95,1,0)
[1] 3.841459
> qchisq(0.10,1,10.51)
[1] 3.843019
```
Power of HWE test

The area under the non-central chi-square curve to the right of $X^2 = 3.84$ is the probability of rejecting HWE when HWE is false. This is the power of the test. In this plot, the non-centrality parameter is $\lambda = 10.5$. 
Sample size determination

To achieve 90% power to reject HWE at the 5% significance level when the true inbreeding coefficient is $f$, need sample size $n$ to make $nf^2 \geq 10.51$.

For $f = 0.01$, need $n \geq 10.51/(0.01)^2 = 105,100$.

For $f = 0.05$, need $n \geq 10.51/(0.05)^2 = 4,204$.

For $f = 0.10$, need $n \geq 10.51/(0.10)^2 = 1,051$. 
Population Structure: Departures from HWE

If a population consists of a number of subpopulations, each in HWE but with different allele frequencies, there will be a departure from HWE at the population level. This is the Wahlund effect.

Suppose there are two equal-sized subpopulations, each in HWE but with different allele frequencies, then

<table>
<thead>
<tr>
<th></th>
<th>Subpopn 1</th>
<th>Subpopn 2</th>
<th>Total Popn</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_A$</td>
<td>0.6</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>$p_a$</td>
<td>0.4</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>$P_{AA}$</td>
<td>0.36</td>
<td>0.16</td>
<td>0.26 &gt; (0.5)^2</td>
</tr>
<tr>
<td>$P_{Aa}$</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48 &lt; 2(0.5)(0.5)</td>
</tr>
<tr>
<td>$P_{aa}$</td>
<td>0.16</td>
<td>0.36</td>
<td>0.26 &gt; (0.5)^2</td>
</tr>
</tbody>
</table>
Population Admixture: Departures from HWE

A population might represent the recent admixture of two parental populations. With the same two populations as before but now with 1/4 of marriages within population 1, 1/2 of marriages between populations 1 and 2, and 1/4 of marriages within population 2. If children with one or two parents in population 1 are considered as belonging to population 1, there is an excess of heterozygosity in the offspring population.

If the proportions of marriages within populations 1 and 2 are both 25% and the proportion between populations 1 and 2 is 50%, the next generation has

\[
\begin{array}{lcc}
 & \text{Population 1} & \text{Population 2} \\
\hline
P_{AA} & 0.09 + 0.12 = 0.21 & 0.04 \\
P_{Aa} & 0.12 + 0.26 = 0.38 & 0.12 \\
P_{aa} & 0.04 + 0.12 = 0.16 & 0.09 \\
\hline
 & 0.75 & 0.25
\end{array}
\]

Population 2 is in HWE, but Population 2 has 51% heterozygotes instead of the expected 49.8%.
Significance Levels and $p$-values

The significance level $\alpha$ of a test is the probability of a false rejection. It is specified by the user, and along with the null hypothesis, it determines the rejection region. The specified, or “nominal” value may not be achieved for an actual test.

Once the test has been conducted on a data set, the probability of the observed test statistic, or a more extreme value, if the null hypothesis is true is the $p$-value. The chi-square and normal tests shown above give approximate $p$-values because they use a continuous distribution for discrete data.

An alternative class of tests, “exact tests,” use a discrete distribution for discrete data and provide accurate $p$-values. It may be difficult to construct an exact test with a particular nominal significance level.
Exact HWE Test

The preferred test for HWE is an exact one. The test rests on the assumption that individuals are sampled randomly from a population so that genotype counts have a multinomial distribution:

\[
Pr(n_{AA}, n_{Aa}, n_{aa}) = \frac{n!}{n_{AA}!n_{Aa}!n_{aa}!}(P_{AA})^{n_{AA}}(P_{Aa})^{n_{Aa}}(P_{aa})^{n_{aa}}
\]

This equation is always true, and when there is HWE \((P_{AA} = p_A^2\) etc.) there is the additional result that the allele counts have a binomial distribution:

\[
Pr(n_A, n_a) = \frac{(2n)!}{n_A!n_a!}(p_A)^{n_A}(p_a)^{n_a}
\]
Exact HWE Test

Putting these together gives the conditional probability

$$\Pr(n_{AA}, n_{Aa}, n_{aa} | n_A, n_a) = \frac{\Pr(n_{AA}, n_{Aa}, n_{aa} \text{ and } n_A, n_a)}{\Pr(n_A, n_a)}$$

$$= \frac{n!}{n_{AA}! n_{Aa}! n_{aa}!} (p_A^2)^{n_{AA}} (2p_A p_a)^{n_{Aa}} (p_a^2)^{n_{aa}}$$

$$= \frac{(2n)!}{n_A! n_a!} (p_A)^{n_A} (p_a)^{n_a}$$

$$= \frac{n!}{n_{AA}! n_{Aa}! n_{aa}!} \frac{2^{n_{Aa}} n_A! n_a!}{(2n)!}$$

Reject the Hardy-Weinberg hypothesis if this quantity, the probability of the genotypic array conditional on the allelic array, is among the smallest of its possible values.
Exact HWE Test Example

For convenience, write the probability of the genotypic array, conditional on the allelic array and HWE, as \( \Pr(n_{Aa|n,n_A}) \). Reject the HWE hypothesis for a data set if this value is among the smallest probabilities.

As an example, consider \( (n_{AA} = 1, n_{Aa} = 0, n_{aa} = 49) \). The allele counts are \( (n_A = 2, n_a = 98) \) and there are only two possible genotype arrays:

\[
\begin{array}{ccc}
AA & Aa & aa & \Pr(n_{Aa|n,n_A}) \\
\hline
1 & 0 & 49 & \frac{50!}{1!0!49!} \cdot \frac{2^0}{2!98!} \cdot \frac{98!}{100!} = \frac{1}{99} \\
0 & 2 & 48 & \frac{50!}{0!2!48!} \cdot \frac{2^2}{2!98!} \cdot \frac{98!}{100!} = \frac{98}{99} \\
\end{array}
\]

The \( p \)-value is 0.01 and HWE is rejected at the 5% level.
Exact HWE Test Example

In this example, \( \hat{f} = 0 \) and the chi-square test statistic is \( X^2 = 50 \). The resulting \( p \)-value is \( 1.54 \times 10^{-12} \), substantially different from the exact value of 0.01.

\[
> 1 - \text{pchisq}(50, 1, 0)
\]

[1] 1.537437e-12
Exact HWE Test Example

As another example, the sample with \( n_{AA} = 6, n_{Aa} = 3, n_{aa} = 1 \) has allele counts \( n_a = 15, n_A = 5 \). There are two other sets of genotype counts possible and the probabilities of each set for a HWE population are:

\[
\begin{array}{cccc|cc|cc}
 n_{AA} & n_{Aa} & n_{aa} & n_A & n_a & Pr(n_{AA}, n_{Aa}, n_{aa}|n_A, n_a) \\
\hline
5 & 5 & 0 & 15 & 5 & \frac{10!}{5!5!0!} \frac{2^515!5!}{20!} = \frac{168}{323} = 0.520 \\
6 & 3 & 1 & 15 & 5 & \frac{10!}{6!3!1!} \frac{2^315!5!}{20!} = \frac{140}{323} = 0.433 \\
7 & 1 & 2 & 15 & 5 & \frac{10!}{7!1!2!} \frac{2^115!5!}{20!} = \frac{15}{323} = 0.047 \\
\end{array}
\]

The \( p \)-value is \( 0.433 + 0.047 = 0.480 \). Compare this to the chi-square \( p \)-value for \( X^2 = 0.40 \):

\[
> \text{pchisq}(0.4,1)
\]

[1] 0.4729107

96
Exact HWE Test Example

For a sample of size \( n = 100 \) with minor allele frequency of 0.07, there are 8 sets of possible genotype counts:

<table>
<thead>
<tr>
<th>( n_{AA} )</th>
<th>( n_{Aa} )</th>
<th>( n_{aa} )</th>
<th>Prob.</th>
<th>( p)-value</th>
<th>( X^2 )</th>
<th>( p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>0</td>
<td>7</td>
<td>0.0000</td>
<td>0.0000*</td>
<td>100.00</td>
<td>0.0000*</td>
</tr>
<tr>
<td>92</td>
<td>2</td>
<td>6</td>
<td>0.0000</td>
<td>0.0000*</td>
<td>71.64</td>
<td>0.0000*</td>
</tr>
<tr>
<td>91</td>
<td>4</td>
<td>5</td>
<td>0.0000</td>
<td>0.0000*</td>
<td>47.99</td>
<td>0.0000*</td>
</tr>
<tr>
<td>90</td>
<td>6</td>
<td>4</td>
<td>0.0002</td>
<td>0.0002*</td>
<td>29.07</td>
<td>0.0000*</td>
</tr>
<tr>
<td>89</td>
<td>8</td>
<td>3</td>
<td>0.0051</td>
<td>0.0053*</td>
<td>14.87</td>
<td>0.0001*</td>
</tr>
<tr>
<td>88</td>
<td>10</td>
<td>2</td>
<td>0.0602</td>
<td>0.0655</td>
<td>5.38</td>
<td>0.0204*</td>
</tr>
<tr>
<td>87</td>
<td>12</td>
<td>1</td>
<td>0.3209</td>
<td>0.3864</td>
<td>0.61</td>
<td>0.4348</td>
</tr>
<tr>
<td>86</td>
<td>14</td>
<td>0</td>
<td>0.6136</td>
<td>1.0000</td>
<td>0.57</td>
<td>0.4503</td>
</tr>
</tbody>
</table>

So, for a nominal 5% significance level, the actual significance level is 0.0053 for an exact test that rejects when \( n_{Aa} \leq 8 \) and is 0.0204 for an exact test that rejects when \( n_{Aa} \leq 10 \).
Modified Exact HWE Test

Traditionally, the $p$-value is the probability of the data plus the probabilities of all the less-probable datasets. The probabilities are all calculated assuming HWE is true and are conditional on the observed allele frequencies. More recently (Graffelman and Moreno, Statistical Applications in Genetics and Molecular Biology 12:433-448, 2013) it has been shown that the test has a significance value closer to the nominal value if the $p$-value is half the probability of the data plus the probabilities of all datasets that are less probably under the null hypothesis. For the $(n_{AA} = 1, n_{Aa} = 0, n_{aa} = 49)$ example then, the $p$-value is $1/198$. 
Figure 1  Computation of the p-value in an exact test for HWP, for a sample of 50 individuals with a minor allele count of 23, for which 13 heterozygotes were observed. (A) One-sided p-value in a test for heterozygote dearth. (B) p-value obtained by doubling the one-sided tail. (C) Standard two-sided p-value, (D) Mid p-value based on half the probability of the observed sample.
Usual vs Mid $p$ values

|   | AA | Aa | aa | Pr($n_{Aa}|n, n_A$) | Usual | Mid |
|---|----|----|----|----------------------|-------|-----|
| 1 | 0  | 49 |    | $\frac{50!}{1!0!49!} \frac{2^{0}2^{1}98!}{100!}$ | 0.99  | 0.50 |
| 0 | 2  | 48 |    | $\frac{50!}{0!2!48!} \frac{2^{2}2^{1}98!}{100!}$ | 0.99  | 0.50 |

Average 0.99 0.50
### Usual vs Mid $p$ values

| $AA$ | $Aa$ | $aa$ | $\Pr(n_{AA}|n, n_A)$ | $\text{pvalue}$ | \begin{tabular}{c|c|c|c|c|c} \hline & Usual & Mid \end{tabular} |
|------|------|------|----------------------|-----------------|-------------------|
| 5    | 5    | 0    | 0.520                | 1.000           | 0.740             |
| 6    | 3    | 1    | 0.433                | 0.480           | 0.287             |
| 7    | 1    | 2    | 0.047                | 0.047           | 0.023             |
| **Average** |        |      | **0.730**           | **0.510**     |
Modified Exact HWE Test Example

For a sample of size $n = 100$ with minor allele frequency of 0.07, there are 8 sets of possible genotype counts:

<table>
<thead>
<tr>
<th>$n_{AA}$</th>
<th>$n_{Aa}$</th>
<th>$n_{aa}$</th>
<th>Exact</th>
<th>Chi-square</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prob.</td>
<td>$X^2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mid $p$-value</td>
<td>$p$-value</td>
</tr>
<tr>
<td>93</td>
<td>0</td>
<td>7</td>
<td>0.0000</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000*</td>
<td>0.0000*</td>
</tr>
<tr>
<td>92</td>
<td>2</td>
<td>6</td>
<td>0.0000</td>
<td>71.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000*</td>
<td>0.0000*</td>
</tr>
<tr>
<td>91</td>
<td>4</td>
<td>5</td>
<td>0.0000</td>
<td>47.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000*</td>
<td>0.0000*</td>
</tr>
<tr>
<td>90</td>
<td>6</td>
<td>4</td>
<td>0.0002</td>
<td>29.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0002*</td>
<td>0.0000*</td>
</tr>
<tr>
<td>89</td>
<td>8</td>
<td>3</td>
<td>0.0051</td>
<td>14.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0028*</td>
<td>0.0001*</td>
</tr>
<tr>
<td>88</td>
<td>10</td>
<td>2</td>
<td>0.0602</td>
<td>5.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0353*</td>
<td>0.0204*</td>
</tr>
<tr>
<td>87</td>
<td>12</td>
<td>1</td>
<td>0.3209</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2262</td>
<td>0.4348</td>
</tr>
<tr>
<td>86</td>
<td>14</td>
<td>0</td>
<td>0.6136</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.6832</td>
<td>0.4503</td>
</tr>
</tbody>
</table>

So, for a nominal 5% significance level, the actual significance level is 0.0353 for an exact test that rejects when $n_{Aa} \leq 10$ and is 0.0204 for a chi-square test that also rejects when $n_{Aa} \leq 10$.  

102
Effect of Minor Allele Frequency

The minor allele frequency (MAF) in the previous example was \( \frac{14}{200} = 0.07 \). How does the exact test behave with other MAF values?

In particular, what is the size of the rejection region for a nominal value of \( \alpha = 0.05 \)? In other words, we decide to reject HWE for any sample with a mid \( p \)-value of 0.05 or less. We find the rejection region and calculate the mid \( p \)-value and we would hope that this empirical significance level would be close to the nominal value, but we find that it may not be.
\( n_a = 16 \) minor alleles

When the minor allele frequency is 0.08, for a nominal 5% significance level, the actual significance level is 0.0070 for an exact test that rejects when \( n_{Aa} \leq 10 \).

| \( n_{AA} \) | \( n_{Aa} \) | \( n_{aa} \) | \( \Pr(n_{Aa}|n_a) \) | mid \( p \) value |
|------------|------------|------------|-----------------|-----------------|
| 92         | 0          | 8          | .0000           | .0000           |
| 91         | 2          | 7          | .0000           | .0000           |
| 90         | 4          | 6          | .0000           | .0000           |
| 89         | 6          | 5          | .0000           | .0000           |
| 88         | 8          | 4          | .0008           | .0004           |
| 87         | 10         | 3          | .0123           | .0070           |
| 86         | 12         | 2          | .0974           | .0618           |
| 85         | 14         | 1          | .3681           | .2946           |
| 84         | 16         | 0          | .5215           | .7382           |
\( n_a = 15 \) minor alleles

When the minor allele frequency is 0.075, for a nominal 5% significance level, the actual significance level is 0.0473 for an exact test that rejects when \( n_{Aa} \leq 11 \).

| \( n_{AA} \) | \( n_{Aa} \) | \( n_{aa} \) | \( \Pr(n_{Aa} | n_a) \) | mid \( p \) value |
|-------------|-------------|-------------|----------------|-----------------|
| 92          | 1           | 7           | .0000          | .0000           |
| 91          | 3           | 6           | .0000          | .0000           |
| 90          | 5           | 5           | .0000          | .0000           |
| 89          | 7           | 4           | .0004          | .0002           |
| 88          | 9           | 3           | .0081          | .0045           |
| 87          | 11          | 2           | .0776          | .0473           |
| 86          | 13          | 1           | .3464          | .2594           |
| 85          | 15          | 0           | .5675          | .7163           |
\( n_a = 13 \) minor alleles

When the minor allele frequency is 0.065, for a nominal 5% significance level, the actual significance level is 0.0257 for an exact test that rejects when \( n_{Aa} \leq 9 \).

| \( n_{AA} \) | \( n_{Aa} \) | \( n_{aa} \) | \( \text{Pr}(n_{Aa|n_a}) \) | mid \( p \) value |
|---|---|---|---|---|
| 93 | 1 | 6 | 0.0000 | 0.0000 |
| 92 | 3 | 5 | 0.0000 | 0.0000 |
| 91 | 5 | 4 | 0.0001 | 0.0001 |
| 90 | 7 | 3 | 0.0030 | 0.0016 |
| 89 | 9 | 2 | 0.0452 | 0.0257 |
| 88 | 11 | 1 | 0.2923 | 0.1945 |
| 87 | 13 | 0 | 0.6595 | 0.6704 |
$n_a = 12$ minor alleles

When the minor allele frequency is 0.06, for a nominal 5% significance level, the actual significance level is 0.0181 for an exact test that rejects when $n_{Aa} \leq 8$.

| $n_{AA}$ | $n_{Aa}$ | $n_{aa}$ | Pr($n_{Aa}|n_a$) | mid $p$ value |
|----------|----------|----------|------------------|---------------|
| 94       | 0        | 6        | .0000            | .0000         |
| 93       | 2        | 5        | .0000            | .0000         |
| 92       | 4        | 4        | .0000            | .0000         |
| 91       | 6        | 3        | .0017            | .0017         |
| 90       | 8        | 2        | .0327            | .0181         |
| 89       | 10       | 1        | .2612            | .1650         |
| 88       | 12       | 0        | .7045            | .2955         |
Figure 2  Type I error rate against minor allele count for different sample sizes (25, 50, 100 and 1000) and significance levels (0.05, 0.01, and 0.001) for exact tests with standard two-sided (red), doubled one-sided (blue) and mid p-values (green).
Power of Exact Test

If there is not HWE:

\[
\Pr(n_{Aa}|n_A, n_a) = \frac{n!}{n_{AA}!n_{Aa}!n_{aa}!}(P_{AA})^{n_{AA}}(P_{Aa})^{n_{Aa}}(P_{aa})^{n_{aa}}
\]

\[
= \frac{n!}{n_{AA}!n_{Aa}!n_{aa}!}(P_{AA})^{\frac{n_{A}-n_{Aa}}{2}}(P_{Aa})^{n_{Aa}}(P_{aa})^{\frac{n_{a}-n_{Aa}}{2}}
\]

\[
= \frac{n!}{n_{AA}!n_{Aa}!n_{aa}!}(\sqrt{P_{AA}})^{n_{A}}(\sqrt{P_{aa}})^{n_{a}} \left(\frac{P_{Aa}}{\sqrt{P_{AA}P_{aa}}}\right)^{n_{Aa}}
\]

\[
= \frac{C \psi^{n_{Aa}}}{n_{AA}!n_{Aa}!n_{aa}!}
\]

where \( \psi = \frac{P_{Aa}}{\sqrt{P_{AA}P_{aa}}} \) measures the departure from HWE. The constant \( C \) makes the probabilities sum to one over all possible \( n_{Aa} \) values: \( C = 1/\left[\sum n_{Aa} \psi^{n_{Aa}}/(n_{AA}!n_{Aa}!n_{aa}!)\right] \).
Power of Exact Test

Once the rejection region has been determined, the power of the test (the probability of rejecting) can be found by adding these probabilities for all sets of genotype counts in the region. HWE corresponds to $\psi = 2$. What is the power to detect HWE when $\psi = 1$, the sample size is $n = 10$ and the sample allele frequencies are $\tilde{p}_A = 0.75, \tilde{p}_a = 0.25$? Note that $C = 1/[1/(5!5!0!) + 1/(6!3!1!) + 1/(7!1!2!)]$.

\[
\begin{array}{cccccc}
 n_{AA} & n_{Aa} & n_{aa} & \psi = 2 & \psi = 1 \\
 5 & 5 & 0 & 0.520 & 0.262 \\
 6 & 3 & 1 & 0.433 & 0.364 \\
 7 & 1 & 2 & 0.047 & 0.374 \\
\end{array}
\]

The $\psi = 2$ column shows that the rejection region is $n_{Aa} = 1$. The $\psi = 1$ column shows that the power (the probability $n_{Aa} = 1$ when $\psi = 1$) is 37.4%.
## Power Examples

For given values of $n, n_a$, the rejection region is determined from null hypothesis and the power is determined from the multinomial distribution.

| $n_{Aa}$ | Pr($n_{Aa}|n_a = 16, n = 100$) | $\Psi$ | $f$ |
|----------|--------------------------------|-------|-----|
|          |                                | .250  | .500| 1.000| 2.000| 4.000| 8.000| 16.000|
| 0        |                                | .631  | .398| .157 | .000 | -.062| -.081| -.085 |
| 2        |                                | .0956 | .0026| .0000| .0000| .0000| .0000| .0000 |
| 4        |                                | .3172 | .0349| .0003| .0000| .0000| .0000| .0000 |
| 6        |                                | .3568 | .1569| .0056| .0000| .0000| .0000| .0000 |
| 8        |                                | .3172 | .3116| .0441| .0008| .0000| .0000| .0000 |
| 10       |                                | .0433 | .3047| .1725| .0123| .0003| .0000| .0000 |
| 12       |                                | .0054 | .1506| .3411| .0974| .0098| .0007| .0000 |
| 14       |                                | .0003 | .0356| .3223| .3681| .1485| .0422| .0109 |
| 16       |                                | .0000 | .0032| .1142| .5214| .8414| .9571| .9890 |

Power | .9943 | .8107 | .2225 | .0131 | .0003 | .0000 | .0000
\[ n_a = 15 \text{ Probabilities} \]

<table>
<thead>
<tr>
<th>( n_{Aa} )</th>
<th>( \psi )</th>
<th>0.250</th>
<th>0.500</th>
<th>1.000</th>
<th>2.000</th>
<th>4.000</th>
<th>8.000</th>
<th>16.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td></td>
<td>0.622</td>
<td>0.389</td>
<td>0.150</td>
<td>0.000</td>
<td>-0.058</td>
<td>-0.075</td>
<td>-0.080</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.0338</td>
<td>0.0006</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.2269</td>
<td>0.0150</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.3871</td>
<td>0.1027</td>
<td>0.0026</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.2592</td>
<td>0.2750</td>
<td>0.0273</td>
<td>0.0004</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.0801</td>
<td>0.3400</td>
<td>0.1352</td>
<td>0.0081</td>
<td>0.0002</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.0120</td>
<td>0.2040</td>
<td>0.3245</td>
<td>0.0776</td>
<td>0.0074</td>
<td>0.0005</td>
<td>0.0000</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0.0008</td>
<td>0.0569</td>
<td>0.3620</td>
<td>0.3464</td>
<td>0.1314</td>
<td>0.0367</td>
<td>0.0094</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0.0000</td>
<td>0.0058</td>
<td>0.1482</td>
<td>0.5674</td>
<td>0.8610</td>
<td>0.9627</td>
<td>0.9905</td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td>0.9871</td>
<td>0.7333</td>
<td>0.1652</td>
<td>0.0085</td>
<td>0.0002</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
$n_a = 14$ Probabilities

<table>
<thead>
<tr>
<th>$n_{Aa}$</th>
<th>$\psi$</th>
<th>.250</th>
<th>.500</th>
<th>1.000</th>
<th>2.000</th>
<th>4.000</th>
<th>8.000</th>
<th>16.000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$f$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>.613</td>
<td>.378</td>
<td>.143</td>
<td>.000</td>
<td>-.054</td>
<td>-.070</td>
<td>-.074</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.1256</td>
<td>.051</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.3610</td>
<td>.058</td>
<td>.010</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.3422</td>
<td>.220</td>
<td>.015</td>
<td>.002</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.1375</td>
<td>.354</td>
<td>.100</td>
<td>.051</td>
<td>.001</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.0255</td>
<td>.263</td>
<td>.297</td>
<td>.060</td>
<td>.054</td>
<td>.004</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>.0021</td>
<td>.087</td>
<td>.396</td>
<td>.320</td>
<td>.115</td>
<td>.031</td>
<td>.008</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>.0001</td>
<td>.010</td>
<td>.189</td>
<td>.613</td>
<td>.879</td>
<td>.968</td>
<td>.991</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power</td>
<td>.972</td>
<td>.638</td>
<td>.116</td>
<td>.005</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
</tbody>
</table>

113
\( n_a = 13 \) Probabilities

| \( n_{Aa} \) | \( \psi \) \( f \) | \( \Pr(n_{Aa}|n_a = 13) \) |
|---|---|---|
| | .250 | .500 | 1.000 | 2.000 | 4.000 | 8.000 | 16.000 |
| 1 | .603 | .366 | .136 | .000 | -.050 | -.065 | -.068 |
| 3 | .0479 | .0012 | .0000 | .0000 | .0000 | .0000 | .0000 |
| 5 | .2786 | .0275 | .0003 | .0000 | .0000 | .0000 | .0000 |
| 7 | .4004 | .1583 | .0080 | .0001 | .0000 | .0000 | .0000 |
| 9 | .2169 | .3430 | .0696 | .0030 | .0001 | .0000 | .0000 |
| 11 | .0508 | .3216 | .2611 | .0452 | .0038 | .0003 | .0000 |
| 13 | .0051 | .1301 | .4225 | .2923 | .0994 | .0269 | .0069 |
| 11 | .0002 | .0183 | .2383 | .6595 | .8967 | .9728 | .9931 |

| Power | .9947 | .8516 | .3391 | .0483 | .0039 | .0003 | .0000 |
$n_a = 12$ Probabilities

| $n_Aa$ | $\psi$ | $f$ | $\Pr(n_Aa|n_a = 12)$ |
|--------|--------|-----|---------------------|
| 0      | .250   | .592| .0095              |
| 2      | .500   | .353| .1674              |
| 4      | 1.000  | .128| .4053              |
| 6      | 2.000  | .000| .3108              |
| 8      | 4.000  | −.046| .0947         |
| 10     | 8.000  | −.059| .0118         |
| 12     | 16.000 | −.063| .0005           |

Power | .9877 | .7836 | .2674 | .0344 | .0027 | .0002 | .0000 |
Graffelman and Moreno, 2013

Figure 3  Power of HWP exact tests against minor allele count for different sample sizes (25, 50, 100 and 1000) and degree of disequilibrium (1, 2, 4, 8 and 16). Standard two-sided (red), doubled one-sided (blue) and mid p-values (green).
Permutation Test

For large sample sizes and many alleles per locus, there are too many genotypic arrays for a complete enumeration and a determination of which are the least probable 5% arrays.

A large number of the possible arrays is generated by permuting the alleles among genotypes, and calculating the proportion of these permuted genotypic arrays that have a smaller conditional probability than the original data. If this proportion is small, the Hardy-Weinberg hypothesis is rejected.

This procedure is not needed for SNPs with only 2 alleles. The number of possible arrays is always less than about half the sample size.
Multiple Testing

When multiple tests are performed, each at significance level $\alpha$, a proportion $\alpha$ of the tests are expected to cause rejection even if all the hypotheses are true.

Bonferroni correction makes the overall (experimentwise) significance level equal to $\alpha$ by adjusting the level for each individual test to $\alpha'$. If $\alpha$ is the probability that at least one of the $L$ tests causes rejection, it is also 1 minus the probability that none of the tests causes rejection:

$$\alpha = 1 - (1 - \alpha')^L \approx L\alpha'$$

provided the $L$ tests are independent.

If $L = 10^6$, the “genome-wide significance level” is $5 \times 10^{-8}$ in order for $\alpha = 0.05$. 
QQ-Plots

An alternative approach to considering multiple-testing issues is to use QQ-plots. If all the hypotheses being tested are true then the resulting \( p \)-values are uniformly distributed between 0 and 1.

For a set of \( n \) tests, we would expect to see \( n \) evenly spread \( p \) values between 0 and 1 e.g. \( 1/2n, 3/n, \ldots, (2n - 1)/2n \). We plot the observed \( p \)-values against these expected values: the smallest against \( 1/n \) and the largest against 1. It is more convenient to transform to \(-\log_{10}(p)\) to accentuate the extremely small \( p \) values. The point at which the observed values start departing from the expected values is an indication of “significant” values in a way that takes into account the number of tests.

A useful diagnostic for QQ-plots is the “genomic control” quantity \( \lambda \). This is the ratio of the median of the observed distribution of the test statistic to the expected median. We have calculated this from the \( p \)-values of the exact test statistics, and assumed these have a uniform distribution on \([0,1]\), and a median of 0.5, under the null hypothesis of HWE. The ratio should be 1.
The results for 9208 SNPs on human chromosome 1 for the 50 AMD controls ($\lambda = 0.86$). Bonferroni would suggest rejecting HWE when $p \leq 0.05/9205 = 5.4 \times 10^{-6}$ or $-\log_{10}(p) \geq 5.3$. 
The same set of results as on the previous slide except now that any SNP with any missing data was excluded ($\lambda = 1.035$, closer to 1 than for all the SNPs). Now 7446 SNPs and Bonferroni would reject if $-\log_{10}(p) \geq 5.2$. All five outliers had zero counts for the minor allele homozygote and at least 32 heterozygotes in a sample of size 50.
Imputing Missing Data

Instead of discarding an individual for any SNP when there is no genotype call, it may be preferable to use neighboring SNPs to impute the missing values. This procedure has been applied to a study on pre-term birth (Graffelman et al., 2015, G3 (Genes, Genomes, Genetics) 5:2365-2373).

DeFinetti diagram: distance of point to side of triangle is frequency of genotype shown on opposite vertex.
Imputing Missing Data

<table>
<thead>
<tr>
<th>SNP</th>
<th>Discard</th>
<th>Impute</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs818284</td>
<td>0.000</td>
<td>0.000</td>
<td>Null alleles</td>
</tr>
<tr>
<td>rs13022866</td>
<td>0.046</td>
<td>0.571</td>
<td>Het deficiency</td>
</tr>
<tr>
<td>rs3766263</td>
<td>0.020</td>
<td>0.539</td>
<td>Het excess</td>
</tr>
<tr>
<td>rs2714888</td>
<td>0.192</td>
<td>0.007</td>
<td>Hom deficiency</td>
</tr>
</tbody>
</table>
Graffelman et al., 2015

Deficiency

Two-sided

Excess
HWE Test for X-linked Markers

Under HWE, allele frequencies in males and females should be the same. Best to examine the difference when testing for HWE.

If a sample has $n_m$ males and $n_f$ females, and if the males have $m_A, m_B$ alleles of types $A, B$, and if females have $f_{AA}, f_{AB}, f_{BB}$ genotypes $AA, AB, BB$, then the probability of the data, under HWE, is

$$\frac{n_A!n_B!n_m!n_f!}{m_A!m_B!f_{AA}!f_{AB}!f_{BB}!n_t!}2^{f_{AB}}$$

where $n_t = n_m + 2n_f$.

(Graffelman and Weir, 2016, Heredity 116:558-568).
Example: 10 males, 10 females, 6 $A$ alleles

<table>
<thead>
<tr>
<th></th>
<th>$m_A$</th>
<th>$m_B$</th>
<th>$f_{AA}$</th>
<th>$f_{AB}$</th>
<th>$f_{BB}$</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>0.0002</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>0.0085</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>0.0340</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>0.0226</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>0.0121</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>0.1132</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>0.1358</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>0.0034</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>0.1091</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>0.2546</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>0.0364</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>0.1940</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>0.0035</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>0.0637</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>0.0085</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>10</td>
<td></td>
<td>0.0004</td>
</tr>
</tbody>
</table>
X-linked Markers: Possible Scenarios

Figure 2 Hardy-Weinberg disequilibrium for a biallelic marker on the X chromosome. (a) Equilibrium. (b) Disequilibrium due to deviating female genotype frequencies. (c) Disequilibrium due to nonhomogeneous allele frequencies. (d) Disequilibrium due to deviating female genotype frequencies and nonhomogeneous allele frequencies.
Figure 4. Type I error rate of X-chromosomal tests for HWP as a function of sex ratio and MAF. The Type I error rate of an all-individual test for HWP is plotted for the exact test with the standard $P$-value (red), the exact test with the mid $P$-value (green) and the $\chi^2$ test without continuity correction (blue). $n$, sample size (100); $nf$, number of females; $nm$, number of males.
X-linked Markers: Real Data

Figure 6: Scatter plots of $P$-values for $\chi^2$ tests and exact tests for HWE using females only and using both males and females for 4158 SNPs at the X chromosome of the venous thrombosis database. The horizontal and vertical black lines in (b) and (d) corresponds to a significance level of 5%. Points colored according to their significance level in Fisher's test for equality of allele frequencies (range 0-1 from red to green).
X-linked Markers: Real Data

Figure 8: Cluster plots of allele intensities of four SNPs of the venous thrombosis database that are significant (a, b, c) in an all-individual exact test for HWE.
Separate Male and Female Autosomal Counts

The X-linked test can be extended to autosomal markers when genotype counts are recorded separately for males and females.

Separate M&F Counts: Scenarios

**Figure 2** Ternary diagrams for male and female genotype frequencies

*Notes:* (A) HW and EAF. (B) Equality of inbreeding coefficients, EAF, and both sexes out of HW. (C) Unequal inbreeding coefficients, both sexes out of equilibrium but with equal allele frequencies. (D) Both sexes in HW but with different allele frequencies. (E) Each sex out of equilibrium with identical inbreeding coefficients and different allele frequencies. (F) Both sexes out of equilibrium, with different inbreeding coefficients and different allele frequencies. The number of free parameters k is given below the basis of each scenario.
Separate M&F Counts: Joint Exact Test

To test for both Equal Allele Frequencies (EAF) and Hardy-Weinberg Proportions (HWP):

\[
\Pr(m_{AB}, f_{AB}|n, n_A, n_m) = \frac{n_A!n_B!n_m!n_f!2^{m_{AB}+f_{AB}}}{m_{AA}!m_{AB}!m_{BB}!f_{AA}!f_{AB}!f_{BB}!(2n)!}
\]

- \(m_{AA}, m_{AB}, m_{BB}\) genotype counts in males
- \(f_{AA}, f_{AB}, f_{BB}\) genotype counts in females
- \(n_m = m_{AA} + m_{AB} + m_{BB}\) number of males
- \(n_f = f_{AA} + f_{AB} + f_{BB}\) number of females
- \(n = n_m + n_f\) total sample size
- \(m_A = 2m_{AA} + m_{AB}, m_B = 2m_{BB} + m_{AB}\) numbers of \(A, B\) alleles in males
- \(f_A = 2f_{AA} + f_{AB}, f_B = 2f_{BB} + f_{AB}\) numbers of \(A, B\) alleles in females
- \(n_A = m_A + f_A, n_B = m_B + f_B\) total numbers of \(A, B\) alleles
Separate M&F Counts: HWP Exact Test

To test for HWP:

$$\text{Pr}(n_{AB}|n, n_A) = \frac{n_A!n_B!n!2^{n_{AB}}}{n_{AA}!n_{AB}!n_{BB}!}$$

$n_{AA}, n_{AB}, n_{BB}$

$n = n_{AA} + n_{AB} + n_{BB}$

$n_A = 2n_{AA} + n_{AB}, n_B = 2n_{BB} + n_{AB}$

total genotype counts in males and females

total sample size

total numbers of $A, B$ alleles
Separate M&F Counts: EAF Exact Test

To test for EAF:

$$\Pr(n_A|n, m_A) = \frac{n_A!n_B!n_m!n_f!}{m_A!m_B!f_A!f_B!}$$

- $m_A, m_B$: numbers of $A, B$ alleles in males
- $f_A, f_B$: numbers of $A, B$ alleles in females
- $n_m = m_A + m_B$: total number of male alleles
- $n_f = f_A + f_B$: total number of female alleles
- $n_A = m_A + f_A, n_B = m_B + f_B$: total numbers of $A, B$ alleles
- $n = n_m + n_f = n_A + n_B$: total number of alleles in males and females
Separate M&F Counts: 1000 Genomes Result

FIGURE 6 Venn diagrams of HWP, EAF, and joint exact test results for all nonmonomorphic complete SNPs on chromosome 1 of the JPT sample

Notes: Circles enclose the number of significant SNPs (at $\alpha = 0.001$) for the different tests.
SNV Data

Sequence-based variants have many low-frequency alleles that are susceptible to effects of copy-number variation.

Recent survey of 1000Genomes data revealed more departures from HWE than expected by chance, and many of these reflect an apparent heterozygote excess. SNP-array data often show HWE departures from heterozygote deficiency.

(Graffelman et al., 2017. Human Genetics 136:77-741.)
Whole Genome HWE Tests
MHC Region HWE Tests

Copy Number Variants

JPT sample has 3.8% of variants in segmental duplications and 3% in simple tandem repeats. HWD rates 11 times higher in these regions: reflecting sequencing problems due to multiple copies of a variant, leading to heterozygote excess.

“Segmental duplications (SDs) are segments of DNA with near-identical sequence.

A microsatellite is a tract of repetitive DNA in which certain DNA motifs (ranging in length from 25 base pairs) are repeated, typically 5-50 times.”

[Wikipedia]
Copy Number Variants

A Segmental duplications

B Simple tandem repeats

Chromosome

% Significant variants

Inside segmental duplications
Outside segmental duplications

Inside simple tandem repeats
Outside simple tandem repeats
SNV-HWE Conclusions

Significant HWE results may indicate copy number variation - excluding them may also exclude disease-associated variants.

WGS data have heterozygote excess, reflecting copy number variation.

SNP array data have heterozygote deficiency, reflecting null alleles.
Linkage Disequilibrium

This term reserved for association between pairs of alleles – one at each of two loci.

When gametic data are available, could refer to gametic disequilibrium.

When genotypic data are available, but gametes can be inferred, can make inferences about gametic and non-gametic pairs of alleles.

When genotypic data are available, but gametes cannot be inferred, can work with composite measures of disequilibrium.
Linkage Disequilibrium

For alleles \( A \) and \( B \) are two loci, the usual measure of linkage disequilibrium is

\[
D_{AB} = P_{AB} - p_A p_B
\]

Whether or not this is zero does not provide a direct statement about linkage between the two loci. For example, consider marker YFM and disease DTD:

\[
\begin{array}{|c|c|c|}
\hline
 & A & N \\
\hline
+ & 1 & 24 \\
\hline
YFM & & 25 \\
\hline
- & 0 & 75 \\
\hline
Total & 1 & 99 \\
\hline
\end{array}
\]

\[
D_{A+} = \frac{1}{100} - \frac{1}{100} \frac{25}{100} = 0.0075, \text{ (maximum possible value)}
\]
Gametic Linkage Disequilibrium

For loci \textbf{A}, \textbf{B} define indicator variables \(x, y\) that take the value 1 for allele \(A, B\) and 0 for any other alleles. If gametes within individuals are indexed by \(j\), \(j = 1, 2\) then for expectations over samples from the same population

\[
\begin{align*}
\mathcal{E}(x_j) &= p_A, \quad j = 1, 2, \quad \mathcal{E}(y_j) = p_B, \quad j = 1, 2, \\
\mathcal{E}(x_j^2) &= p_A, \quad j = 1, 2, \quad \mathcal{E}(y_j^2) = p_B, \quad j = 1, 2, \\
\mathcal{E}(x_1x_2) &= P_{AA}, \quad \mathcal{E}(y_1y_2) = P_{BB}, \\
\mathcal{E}(x_1y_1) &= P_{AB}, \quad \mathcal{E}(x_2y_2) = P_{AB}
\end{align*}
\]

The variances of \(x_j, y_j\) are \(p_A(1-p_A), p_B(1-p_B)\) for \(j = 1, 2\) and the covariance and correlation coefficients for \(x\) and \(y\) are

\[
\begin{align*}
\text{Cov}(x_1, y_1) = \text{Cov}(x_2, y_2) &= P_{AB} - p_Ap_B = D_{AB} \\
\text{Corr}(x_1, y_1) = \text{Corr}(x_2, y_2) &= \frac{D_{AB}}{\sqrt{[p_A(1-p_A)p_B(1-p_B)]}} = \rho_{AB}
\end{align*}
\]
Estimation of LD

With random sampling of gametes, gamete counts have a multinomial distribution:

\[
\Pr(n_{AB}, n_{Ab}, n_{aB}, n_{ab}) = \frac{n!(P_{AB})^{n_{AB}}(P_{Ab})^{n_{Ab}}(P_{aB})^{n_{aB}}(P_{ab})^{n_{ab}}}{n_{AB}!n_{Ab}!n_{aB}!n_{ab}!}
\]

The data are the counts of four gamete types, so there are three degrees of freedom. There are three parameters: \( p_A, p_B, D_{AB} \) so Bailey’s method leads directly to MLE’s:

\[
\hat{D}_{AB} = \tilde{P}_{AB} - \tilde{p}_A\tilde{p}_B
\]

\[
\hat{\rho}_{AB} = r_{AB} = \frac{\hat{D}_{AB}}{\sqrt{\tilde{P}_{AP_a}\tilde{P}_{Bp_b}}}
\]
Testing LD

Writing the MLE of $D_{AB}$ as

$$\hat{D}_{AB} = \frac{1}{n^2} (n_{AB} n_{ab} - n_{Ab} n_{aB})$$

where $n$ is the number of gametes in the sample, allows the use of the “Delta method” to find

$$\text{Var}(\hat{D}_{AB}) \approx \frac{1}{n} \left[ p_A (1 - p_A) p_B (1 - p_B) + (1 - 2p_A) (1 - 2p_B) D_{AB} - D_{AB}^2 \right]$$

When $D_{AB} = 0$, $\text{Var}(\hat{D}_{AB}) = p_A (1 - p_A) p_B (1 - p_B) / n$.

If $\hat{D}_{AB}$ is assumed to be normally distributed then

$$X_{AB}^2 = \frac{\hat{D}_{AB}^2}{\text{Var}(\hat{D}_{AB})} = n\hat{\rho}_{AB}^2 = nr_{AB}^2$$

is appropriate for testing $H_0 : D_{AB} = 0$. When $H_0$ is true, $X_{AB}^2 \sim \chi^2_1$. Note the analogy to the test statistic for Hardy-Weinberg equilibrium: $X^2 = n\hat{f}^2$. 

147
Goodness-of-fit Test

The test statistic for the $2 \times 2$ table

\[
\begin{array}{ccc}
 n_{AB} & n_{Ab} & n_A \\
n_{aB} & n_{ab} & n_a \\
n_B & n_b & n \\
\end{array}
\]

has the value

\[
X^2 = \frac{n(n_{AB}n_{ab} - n_{Ab}n_{aB})^2}{n_An_an_Bn_b} = \frac{n\hat{D}^2_{AB}}{\hat{p}_A\hat{p}_a\hat{p}_B\hat{p}_b}
\]

For DTD/YFM example, $X^2 = 3.03$. This is not statistically significant, even though disequilibrium was maximal.
Composite Disequilibrium

When genotypes are scored, it is often not possible to distinguish between the two double heterozygotes $AB/ab$ and $Ab/aB$, so that gametic frequencies cannot be inferred.

Under the assumption of random mating, in which genotypic frequencies are assumed to be the products of gametic frequencies, it is possible to estimate gametic frequencies with the EM algorithm. To avoid making the random-mating assumption, however, it is possible to work with a set of composite disequilibrium coefficients.
Composite Disequilibrium

Although the separate digenic frequencies $p_{AB}$ (one gamete) and $p_{A,B}$ (two gametes) cannot be observed, their sum can be since

$$p_{AB} = P_{AB}^{AB} + \frac{1}{2} P_{AB}^{Ab} + \frac{1}{2} P_{AB}^{aB} + \frac{1}{2} P_{AB}^{ab}$$

$$p_{A,B} = P_{AB}^{AB} + \frac{1}{2} P_{AB}^{Ab} + \frac{1}{2} P_{AB}^{aB} + \frac{1}{2} P_{Ab}^{aB}$$

$$p_{AB} + p_{A,B} = 2P_{AB}^{AB} + P_{AB}^{Ab} + P_{aB}^{AB} + \frac{P_{ab}^{AB} + P_{ab}^{Ab}}{2}$$

Digenic disequilibrium is measured with a composite measure $\Delta_{AB}$ defined as

$$\Delta_{AB} = p_{AB} + p_{A,B} - 2p_{AB}p_{B}$$

$$= D_{AB} + D_{A,B}$$

which is the sum of the gametic ($D_{AB} = p_{AB} - p_{AB}p_{B}$) and nongametic ($D_{A,B} = p_{A,B} - p_{AB}p_{B}$) coefficients.
Composite Disequilibrium

If the counts of the nine genotypic classes are

<table>
<thead>
<tr>
<th></th>
<th>BB</th>
<th>Bb</th>
<th>bb</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>n₁</td>
<td>n₂</td>
<td>n₃</td>
</tr>
<tr>
<td>Aa</td>
<td>n₄</td>
<td>n₅</td>
<td>n₆</td>
</tr>
<tr>
<td>aa</td>
<td>n₇</td>
<td>n₈</td>
<td>n₉</td>
</tr>
</tbody>
</table>

the count for pairs of alleles in an individual being A and B, whether received from the same or different parents, is

\[ n_{AB} = 2n₁ + n₂ + n₄ + \frac{1}{2}n₅ \]

and the MLE for \( \Delta \) is

\[ \hat{\Delta}_{AB} = \frac{1}{n}n_{AB} - 2\tilde{p}_A\tilde{p}_B \]
Composite Linkage Disequilibrium

For loci $\mathbf{A, B}$ define indicator variables $x, y$ that take the value 1 for allele $A, B$ and 0 for any other alleles. If gametes within individuals are indexed by $j$, $j = 1, 2$ then for expectations over samples from the same population

$$\mathcal{E}(x_j) = p_A, \ j = 1, 2 \quad , \quad \mathcal{E}(y_j) = p_B \ j = 1, 2$$
$$\mathcal{E}(x_j^2) = p_A, \ j = 1, 2 \quad , \quad \mathcal{E}(y_j) = p_B \ j = 1, 2$$
$$\mathcal{E}(x_1x_2) = P_{AA} \quad , \quad \mathcal{E}(y_1y_2) = P_{BB}$$
$$\mathcal{E}(x_1y_1) = P_{AB} \quad , \quad \mathcal{E}(x_2y_2) = P_{AB}$$
$$\mathcal{E}(x_1y_2) = P_{A,B} \quad , \quad \mathcal{E}(x_2y_1) = P_{A,B}$$

Write

$$D_A = P_{AA} - p_A^2 \quad , \quad D_B = P_{BB} - p_B^2$$
$$D_{AB} = P_{AB} - p_A p_B \quad , \quad D_{A,B} = P_{A,B} - p_A p_B$$
$$\Delta_{AB} = D_{AB} + D_{A,B}$$
Composite Linkage Disequilibrium

Now set $X = x_1 + x_2, Y = y_1 + y_2$, the allelic dosages at each locus, to get

$$E(X) = 2p_A, \quad E(Y) = 2p_B$$

$$E(X^2) = 2(p_A + P_{AA}), \quad E(Y^2) = 2(p_B + P_{BB})$$

$$\text{Var}(X) = 2p_A(1 - p_A)(1 + f_A), \quad \text{Var}(Y) = 2p_B(1 - p_B)(1 + f_B)$$

and

$$E(XY) = 2(P_{AB} + P_{A,B})$$

$$\text{Cov}(X, Y) = 2(P_{AB} - p_A p_B) + 2(P_{A,B} - p_A p_B)$$

$$= 2(D_{AB} + D_{A,B}) = 2\Delta_{AB}$$

$$\text{Corr}(X, Y) = \frac{\Delta_{AB}}{\sqrt{p_A(1 - p_A)(1 + f_A)p_B(1 - p_B)(1 + f_B)}}$$
Composite Linkage Disequilibrium Test

\[ \tilde{\Delta}_{AB} = \frac{n_{AB}}{n} - 2\tilde{p}_A\tilde{p}_B \]

where

\[ n_{AB} = 2n_{AABB} + n_{AABb} + n_{AaBB} + \frac{1}{2}n_{AaBb} \]

This does not require phased data.

By analogy to the gametic linkage disequilibrium result, a test statistic for \( \Delta_{AB} = 0 \) is

\[ X^2_{AB} = \frac{n\tilde{\Delta}^2_{AB}}{\tilde{p}_A(1 - \tilde{p}_A)(1 + \tilde{f}_A)\tilde{p}_B(1 - \tilde{p}_B)(1 + \tilde{f}_B)} \]

This is assumed to be approximately \( \chi^2_{(1)} \) under the null hypothesis.
Example

For the data

<table>
<thead>
<tr>
<th></th>
<th>$BB$</th>
<th>$Bb$</th>
<th>$bb$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AA$</td>
<td>$n_{AABB} = 5$</td>
<td>$n_{AABb} = 3$</td>
<td>$n_{AAbb} = 2$</td>
<td>$n_{AA} = 10$</td>
</tr>
<tr>
<td>$Aa$</td>
<td>$n_{AaBB} = 3$</td>
<td>$n_{AaBb} = 2$</td>
<td>$n_{Aabb} = 0$</td>
<td>$n_{Aa} = 5$</td>
</tr>
<tr>
<td>$aa$</td>
<td>$n_{aaBB} = 0$</td>
<td>$n_{aaBb} = 0$</td>
<td>$n_{aabb} = 0$</td>
<td>$n_{aa} = 0$</td>
</tr>
<tr>
<td>Total</td>
<td>$n_{BB} = 8$</td>
<td>$n_{Bb} = 5$</td>
<td>$n_{bb} = 2$</td>
<td>$n = 15$</td>
</tr>
</tbody>
</table>

\[ n_{AB} = 2 \times 5 + 3 + 3 + \frac{1}{2}(2) = 17 \]

\[ n_A = 25, \quad \tilde{p}_A = \frac{5}{6}; \quad \tilde{p}_A(1 - \tilde{p}_A) = \frac{5}{36} \]

\[ n_B = 21, \quad \tilde{p}_B = \frac{7}{10}; \quad \tilde{p}_B(1 - \tilde{p}_B) = \frac{21}{100} \]

\[ \hat{f}_A = 1 - \frac{5/15}{5/18} = -\frac{1}{5} \]

\[ \hat{f}_B = 1 - \frac{5/15}{21/50} = \frac{13}{63} \]
The estimated composite disequilibrium coefficient is

\[
\hat{\Delta}_{AB} = \frac{17}{15} - 2\frac{2521}{3030} = -\frac{1}{30} = -0.033
\]

The test statistic is

\[
X^2 = \frac{30 \times (0.033)^2}{\frac{5\ 4\ 21\ 76}{36\ 5\ 100\ 63}} = 1.16
\]

Previous work on EM algorithm, assuming HWE, estimated \( p_{AB} \) as 16/30 so

\[
\hat{D}_{AB} = \frac{16}{30} - \frac{2521}{3030} = -\frac{1}{20} = -0.050
\]

\[
X^2 = \frac{30 \times (-0.05)^2}{\frac{5\ 21}{36\ 100}} = 2.57
\]
1000 Genomes Example

For 100,000 random pairs of SNPs chosen from the 379,774 polymorphic SNPs in chromosome 22 of the 1000Genomes ACB population:
Multi-locus Disequilibria: Entropy

It is difficult to describe associations among alleles at several loci. One approach is based on information theory.

For a locus with sample frequencies $\tilde{p}_u$ for alleles $A_u$ the entropy is

$$H_A = - \sum_u \tilde{p}_u \ln(\tilde{p}_u)$$

For two loci with alleles $A_u, B_v$, the entropy is

$$H_{AB} = - \sum_u \sum_v \tilde{P}_{uv} \ln(\tilde{P}_{uv})$$

In the absence of linkage disequilibrium $\tilde{P}_{uv} = \tilde{p}_u \tilde{p}_v$ so

$$H_{AB} = - \sum_u \sum_v \tilde{p}_u \tilde{p}_v [\ln(\tilde{p}_u) + \ln(\tilde{p}_v)]$$

$$= H_A + H_B$$

so if $H_{AB} \neq H_A + H_B$ there is evidence of dependence. This extends to multiple loci.
Conditional Entropy

If the entropy for a multi-locus profile $A$ is $H_A$ then the conditional probability of another locus $B$, given $A$, is $H_{B|A} = H_{AB} - H_A$.

In performing meaningful calculations for Y-STR profiles, this suggests choosing a set of loci by an iterative procedure. First choose locus $L_1$ with the highest entropy. Then choose locus $L_2$ with the largest conditional entropy $H(L_2|L_1)$. Then choose $L_3$ with the highest conditional entropy with the haplotype $L_1L_2$, and so on.
## Conditional Entropy: YHRD Data

<table>
<thead>
<tr>
<th>Added Marker</th>
<th>Entropy</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Multi</td>
<td>Cond.</td>
<td></td>
</tr>
<tr>
<td>DYS385ab</td>
<td>4.750</td>
<td>4.750</td>
<td>4.750</td>
<td></td>
</tr>
<tr>
<td>DYS481</td>
<td>2.962</td>
<td>6.972</td>
<td>2.222</td>
<td></td>
</tr>
<tr>
<td>DYS570</td>
<td>2.554</td>
<td>8.447</td>
<td>1.474</td>
<td></td>
</tr>
<tr>
<td>DYS576</td>
<td>2.493</td>
<td>9.318</td>
<td>0.871</td>
<td></td>
</tr>
<tr>
<td>DYS458</td>
<td>2.220</td>
<td>9.741</td>
<td>0.423</td>
<td></td>
</tr>
<tr>
<td>DYS389II</td>
<td>2.329</td>
<td>9.906</td>
<td>0.165</td>
<td></td>
</tr>
<tr>
<td>DYS549</td>
<td>1.719</td>
<td>9.999</td>
<td>0.093</td>
<td></td>
</tr>
<tr>
<td>DYS635</td>
<td>2.136</td>
<td>10.05</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>DYS19</td>
<td>2.112</td>
<td>10.08</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>DYS439</td>
<td>1.637</td>
<td>10.10</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>DYS533</td>
<td>1.433</td>
<td>10.11</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>DYS456</td>
<td>1.691</td>
<td>10.12</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>GATAH4</td>
<td>1.512</td>
<td>10.12</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>DYS393</td>
<td>1.654</td>
<td>10.13</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>DYS448</td>
<td>1.858</td>
<td>10.13</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>DYS643</td>
<td>2.456</td>
<td>10.13</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>DYS390</td>
<td>1.844</td>
<td>10.13</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>DYS391</td>
<td>1.058</td>
<td>10.13</td>
<td>0.002</td>
<td></td>
</tr>
</tbody>
</table>

Most-discriminating loci may not contribute to the most-discriminating haplotypes. No additional discriminating power beyond 10 loci.
Population Structure and Relatedness
Population STR Data

Individuals from several populations are scored at a series of marker loci. At each locus, an individual has two alleles, one from each parent, and these can be identified. For example, at locus D3S1358:

<table>
<thead>
<tr>
<th>Allele</th>
<th>AFC</th>
<th>NSC</th>
<th>QLC</th>
<th>SAC</th>
<th>TAC</th>
<th>VIA</th>
<th>WAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>.000</td>
<td>.001</td>
<td>.002</td>
<td>.001</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>12</td>
<td>.004</td>
<td>.003</td>
<td>.001</td>
<td>.001</td>
<td>.000</td>
<td>.000</td>
<td>.010</td>
</tr>
<tr>
<td>13</td>
<td>.008</td>
<td>.003</td>
<td>.002</td>
<td>.002</td>
<td>.000</td>
<td>.000</td>
<td>.001</td>
</tr>
<tr>
<td>14</td>
<td>.123</td>
<td>.098</td>
<td>.159</td>
<td>.125</td>
<td>.152</td>
<td>.008</td>
<td>.075</td>
</tr>
<tr>
<td>15</td>
<td>.261</td>
<td>.264</td>
<td>.365</td>
<td>.252</td>
<td>.244</td>
<td>.385</td>
<td>.353</td>
</tr>
<tr>
<td>16</td>
<td>.250</td>
<td>.270</td>
<td>.250</td>
<td>.265</td>
<td>.241</td>
<td>.277</td>
<td>.242</td>
</tr>
<tr>
<td>17</td>
<td>.187</td>
<td>.198</td>
<td>.123</td>
<td>.202</td>
<td>.197</td>
<td>.246</td>
<td>.190</td>
</tr>
<tr>
<td>18</td>
<td>.154</td>
<td>.152</td>
<td>.091</td>
<td>.144</td>
<td>.157</td>
<td>.077</td>
<td>.122</td>
</tr>
<tr>
<td>19</td>
<td>.012</td>
<td>.011</td>
<td>.006</td>
<td>.007</td>
<td>.010</td>
<td>.008</td>
<td>.007</td>
</tr>
<tr>
<td>20</td>
<td>.002</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

What questions can we answer with these data, and how?
### HapMap III SNP Data

<table>
<thead>
<tr>
<th>Code</th>
<th>Population Description</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASW</td>
<td>African ancestry in Southwest USA</td>
<td>142</td>
</tr>
<tr>
<td>CEU</td>
<td>Utah residents with Northern and Western European ancestry from CEPH collection</td>
<td>324</td>
</tr>
<tr>
<td>CHB</td>
<td>Han Chinese in Beijing, China</td>
<td>160</td>
</tr>
<tr>
<td>CHD</td>
<td>Chinese in Metropolitan Denver, Colorado</td>
<td>140</td>
</tr>
<tr>
<td>GIH</td>
<td>Gujarati Indians in Houston, Texas</td>
<td>166</td>
</tr>
<tr>
<td>JPT</td>
<td>Japanese in Tokyo, Japan</td>
<td>168</td>
</tr>
<tr>
<td>LWK</td>
<td>Luhya in Webuye, Kenya</td>
<td>166</td>
</tr>
<tr>
<td>MXL</td>
<td>Mexican ancestry in Los Angeles, California</td>
<td>142</td>
</tr>
<tr>
<td>MKK</td>
<td>Maasai in Kinyawa, Kenya</td>
<td>342</td>
</tr>
<tr>
<td>TSI</td>
<td>Toscani in Italia</td>
<td>154</td>
</tr>
<tr>
<td>YRI</td>
<td>Yoruba in Ibadan, Nigeria</td>
<td>326</td>
</tr>
</tbody>
</table>
HapMap III SNP Data

Some allele frequencies are:

<table>
<thead>
<tr>
<th>SNP</th>
<th>ASW</th>
<th>CEU</th>
<th>CHB</th>
<th>CHD</th>
<th>GIH</th>
<th>JPT</th>
<th>LWK</th>
<th>MXL</th>
<th>MKK</th>
<th>TSI</th>
<th>YRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4789</td>
<td>0.8375</td>
<td>0.9000</td>
<td>0.9143</td>
<td>0.8133</td>
<td>0.5060</td>
<td>0.8169</td>
<td>0.5263</td>
<td>0.8506</td>
<td>0.4049</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0704</td>
<td>0.0932</td>
<td>0.4684</td>
<td>0.4357</td>
<td>0.2831</td>
<td>0.4085</td>
<td>0.1084</td>
<td>0.0423</td>
<td>0.1382</td>
<td>0.1104</td>
<td>0.0525</td>
</tr>
<tr>
<td>3</td>
<td>0.5563</td>
<td>0.8735</td>
<td>0.9000</td>
<td>0.9143</td>
<td>0.8373</td>
<td>0.8795</td>
<td>0.5663</td>
<td>0.8310</td>
<td>0.6355</td>
<td>0.9156</td>
<td>0.4907</td>
</tr>
<tr>
<td>4</td>
<td>0.3944</td>
<td>0.1512</td>
<td>0.1125</td>
<td>0.1214</td>
<td>0.2831</td>
<td>0.1548</td>
<td>0.4819</td>
<td>0.2817</td>
<td>0.2924</td>
<td>0.2338</td>
<td>0.3988</td>
</tr>
<tr>
<td>5</td>
<td>0.3732</td>
<td>0.5957</td>
<td>0.6076</td>
<td>0.6812</td>
<td>0.5602</td>
<td>0.4695</td>
<td>0.2530</td>
<td>0.4718</td>
<td>0.3676</td>
<td>0.5909</td>
<td>0.3405</td>
</tr>
<tr>
<td>6</td>
<td>0.6690</td>
<td>0.8272</td>
<td>0.9000</td>
<td>0.9071</td>
<td>0.6988</td>
<td>0.7976</td>
<td>0.7952</td>
<td>0.7143</td>
<td>0.8187</td>
<td>0.7597</td>
<td>0.7362</td>
</tr>
<tr>
<td>7</td>
<td>0.6197</td>
<td>0.0216</td>
<td>0.4375</td>
<td>0.4500</td>
<td>0.1084</td>
<td>0.4643</td>
<td>0.6024</td>
<td>0.1268</td>
<td>0.4532</td>
<td>0.0390</td>
<td>0.7270</td>
</tr>
<tr>
<td>8</td>
<td>0.3803</td>
<td>0.9784</td>
<td>0.5625</td>
<td>0.5357</td>
<td>0.8916</td>
<td>0.5357</td>
<td>0.3795</td>
<td>0.8732</td>
<td>0.5205</td>
<td>0.9610</td>
<td>0.2669</td>
</tr>
<tr>
<td>9</td>
<td>0.2183</td>
<td>0.7407</td>
<td>0.4750</td>
<td>0.5000</td>
<td>0.6566</td>
<td>0.4167</td>
<td>0.2439</td>
<td>0.5915</td>
<td>0.4006</td>
<td>0.6908</td>
<td>0.1265</td>
</tr>
<tr>
<td>10</td>
<td>0.0986</td>
<td>0.0031</td>
<td>0.0886</td>
<td>0.0286</td>
<td>0.0120</td>
<td>0.0952</td>
<td>0.3012</td>
<td>0.0286</td>
<td>0.3588</td>
<td>0.6519</td>
<td>0.1933</td>
</tr>
</tbody>
</table>

What questions can we answer with these data, and how?
Questions of Interest

- How much genetic variation is there? (animal conservation)

- How much migration (gene flow) is there between populations? (molecular ecology)

- How does the genetic structure of populations affect tests for linkage between genetic markers and human disease genes? (human genetics)

- How should the evidence of matching marker profiles be quantified? (forensic science)

- What is the evolutionary history of the populations sampled? (evolutionary genetics)
Additional Questions of Interest

If genotypic data are available, individual inbreeding and kinship values can be estimated:

- What is the Genetic Relatedness Matrix? (association mapping)

- How do social behaviors evolve?

- How should captive breeding programs be managed? (conservation genetics)

- Are these remains from a person in this family? (disaster victim identification)
Statistical Analysis

Possible to approach these data from purely statistical viewpoint.

Could test for differences in allele frequencies among populations.

Could use various multivariate techniques to cluster populations.

These analyses may not answer the biological questions.
Notation
Genetic Analysis: Frequencies of Allele $A_u$

Among samples of $n_i$ alleles from population $i$: counts for allele $u$ follow a binomial distribution with mean $p_{iu}$ and variance $n_i p_{iu} (1 - p_{iu})$. Sample allele frequencies $\tilde{p}_{iu}$ have expected values $p_{iu}$ and variances $p_{iu} (1 - p_{iu})/n_i$.

Among replicates of population $i$: $p_{iu}$ values follow a distribution with mean $\pi_u$ and variance $\pi_u (1 - \pi_u) \theta^i$. Distribution sometimes assumed to be Beta.
Beta distribution: Theoretical

The beta probability density is proportional to $p^{v-1}(1-p)^{w-1}$ and can take a variety of shapes.
Beta distribution: Experimental

The beta distribution is suggested by a *Drosophila* experiment with 107 replicate populations of size 16, starting with all heterozygotes, by P. Buri (Evolution 10:367, 1956).
What is $\theta$?

Two ways of thinking about $\theta$.

It measures the probability a pair of alleles are identical by descent: and this is with respect to some reference population.

The target alleles may be in specified populations, and this leads to characterization of population structure, or they may be in specified individuals and this leads to characterization of inbreeding and relatedness.

$\theta$ also describes the variance of allele frequencies among populations, or among evolutionary replicates of a single population.


Allele-level \( \theta \)'s

\[ \theta^i \] is average of the within-population probabilities \( \theta^i \). Average over populations of \( \theta^i_W \) is \( \theta^W \).

\[ \theta^B \] is average of the between-population-pair probabilities \( \theta^{ii'} \).
Genotype-level $\theta$’s

$\theta$’s are ibd probabilities for pairs of alleles from specified individuals.

$\theta^i_S$ is average of the within-population coancestries $\theta^i_{jj'}$. $\theta^S$ is average over populations of $\theta^i_S$.

$\theta^B$ is average of the between-population-pair coancestries $\theta^{ii'}_{jj'}$. 

174
Allelic Measure Predicted Values
Predicted Values of the $\theta$’s: Pure Drift

Our estimation procedure for the $\theta$’s holds for all evolutionary scenarios, but the theoretical values of the $\theta$’s do depend on the history of the sampled populations.

In the case of pure drift, where population $i$ has constant size $N_i$ and there is random mating, $t$ generations after the population began drifting from an ancestral population in which $\theta^i = 0$

$$\theta^i(t) = 1 - \left(1 - \frac{1}{2N_i}\right)^t$$

If $t$ is small relative to large $N_i$’s, $\theta^i(t) \approx t/(2N_i)$, and $\theta^W(t) \approx t/(2N_h)$ where $N_h$ is the harmonic mean of the $N_i$. 
Drift Model: Two Populations

Now allow ancestral population itself to have ibd alleles with probability $\theta_{12}$ (the same value as for one allele from current populations 1 and 2):

$$
\theta^1 \quad \theta_{12} \quad \theta^2 \\
\theta^1 \quad \theta_{12} \quad \theta^2 \\
\theta^1 \quad \theta_{12} \quad \theta^2
$$

$$
\theta^i = 1 - (1 - \theta_{12}) \left( \frac{2N_i - 1}{2N_i} \right)^t, \quad i = 1, 2
$$

We avoid needing to know the ancestral value $\theta_{12}$ by making $\theta^1, \theta^2$ relative to $\theta_{12}$:

$$
\beta^i = \frac{\theta^i - \theta_{12}}{1 - \theta_{12}} = 1 - \left( \frac{2N_i - 1}{2N_i} \right)^t \approx \frac{t}{2N_i}, \quad i = 1, 2
$$
Two populations: drift, migration, mutation

There is also a probability $\mu$ that an allele mutates to a new type.
Drift, Mutation and Migration

For populations 1 or 2 with sizes $N_1$ or $N_2$, if $m_1$ or $m_2$ are the proportions of alleles from population 2 or 1, the changes in the $\theta$'s from generation $t$ to $t + 1$ are

\[
\theta^1(t + 1) = (1 - \mu)^2 \left[ (1 - m_1)^2 \phi^1(t) + 2m_1(1 - m_1)\theta^{12}(t) \\
+ m_1^2 \phi^2(t) \right]
\]

\[
\theta^2(t + 1) = (1 - \mu)^2 \left[ m_2^2 \phi^1(t) + 2m_2(1 - m_2)\theta^{12}(t) \\
+ (1 - m_2)^2 \phi^2(t) \right]
\]

\[
\theta^{12}(t + 1) = (1 - \mu)^2 \left[ (1 - m_1)m_2\phi^1(t) + [(1 - m_1)(1 - m_2) \\
+ m_1m_2]\theta^{12}(t) + m_1(1 - m_2)\phi^2(t) \right]
\]

where $\phi^i(t) = 1/(2N_i) + (2N_i - 1)\theta^i(t)/(2N_i)$ and $\mu$ is the infinite-allele mutation rate.

It is possible that both of $\beta^1 = (\theta^1 - \theta^{12})/(1 - \theta^{12})$ and $\beta^2 = (\theta^2 - \theta^{12})/(1 - \theta^{12})$ are positive, or that one of them is negative and the other one positive.
Drift and Mutation

If there is no migration, the $\theta$'s tend to equilibrium values of

\[
\hat{\theta}^1 \approx \frac{1}{1 + 4N_1\mu}
\]

\[
\hat{\theta}^2 \approx \frac{1}{1 + 4N_2\mu}
\]

\[
\hat{\theta}^{12} = 0
\]

so $\beta^i = \theta^i$, $i = 1, 2$. 
Drift, Mutation and Migration

The $\theta$’s are non-negative, but one of the $\beta$’s may be negative.

Drift Only

$\beta^1, \beta^2 > 0$

Drift and Mutation

$\beta^1, \beta^2 > 0$

Drift, Mutation and Migration

$\beta^1 > 0, \beta^2 < 0$
Genotypic Measure Predicted Values
Genotypes vs Alleles

So far we have ignored individual genotypic structure, leading to an analysis of population allele frequencies as opposed to genotypic frequencies.

\( \theta^i \) is the probability two alleles drawn randomly from population \( i \) are ibd, and \( \theta^{ii'} \) is the probability an allele drawn randomly from population \( i \) is ibd to an allele drawn from population \( i' \).

Within population \( i \), we define \( \theta^i_{jj} \) as the probability that two alleles drawn randomly from individual \( j \) are ibd, and \( \theta^i_{jj'} \) as the probability that allele drawn randomly from individual \( j \) is ibd to an allele from individual \( j' \).
Coancestry vs Inbreeding

The **coancestry** of individuals \( j, j' \) in population \( i \) is the probability an allele from \( j \) is ibd to an allele from \( j' \). This is \( \theta_{j,j'}^i \).

The **inbreeding** of individual \( j \) in population \( i \) is the probability the two alleles in that individual are ibd. Write this as \( F_j^i \).

Two alleles drawn from individual \( j \) are equally likely to be the same allele or different alleles:

\[
\theta_{j,j}^i = \frac{1}{2} \left( 1 + F_j^i \right)
\]
Identify the path linking the parents of $I$ to their common ancestor(s).
Path Counting

If the parents $X, Y$ of an individual $I$ have ancestor $A$ in common, and if there are $n$ individuals (including $X, Y, I$) in the path linking the parents through $A$, then the inbreeding coefficient of $I$, or the coancestry of $X$ and $Y$, is

$$F_I = \theta_{XY} = \left(\frac{1}{2}\right)^n (1 + F_A)$$

If there are several ancestors, this expression is summed over all the ancestors.
Average Coancestries

The average over all pairs of distinct individuals, \( j \neq j' \), of the coancestries \( \theta_{jj'}^i \) is written as \( \theta^i_S \). The average of this over populations is \( \theta^S \). These are probabilities for individuals.

When there is random mating and Hardy-Weinberg equilibrium in a population, any pair of distinct alleles in a population (within or between individuals) is equivalent and then the average ibd probability for all these pairs is written as \( \theta^i_W \), where \( W \) means within populations. The average over populations is \( \theta^W \). These are probabilities for distinct alleles.

The ibd probability for any allele from population \( i \) and any allele from population \( i' \) is \( \theta_{ii'}^i \), where \( B \) means between populations. Averaging over all pairs of distinct populations gives \( \theta^B \).
Within-population Inbreeding: $F_{IS}$

For population $i$, the inbreeding coefficient for individual $j$, relative to the identity of pairs of alleles between individuals in that population, is

$$
\beta^i_j = \frac{F^i_j - \theta^i_S}{1 - \theta^i_S}
$$

The average over individuals within this population is the population-specific $F_{IS}^i$, and it compares within-individual ibd to between-individual ibd in the same population. It is the quantity being addressed by Hardy-Weinberg testing in population $i$.

If the reference set of alleles is for pairs of individuals within populations, averaged over populations, then the average relative inbreeding coefficient is $\beta_{IS} = (F^I - \theta^S)/(1 - \theta^S)$ where $F^I$ is the average of $F^i_j$ over individuals $j$ and populations $i$. It is generally called $F_{IS}$. 

188
**Total Inbreeding:** $F_{IT}$

For population $i$, the inbreeding coefficient for individual $j$, relative to the identity of pairs of alleles from different populations averaged over all pairs of populations, is

$$\beta^i_j = \frac{F^i_j - \theta^B}{1 - \theta^B}$$

The average over individuals within this population is the population-specific $F^i_{IT}$. The average of these over all populations is the total inbreeding coefficient $F_{IT} = (F^I - \theta^B)/(1 - \theta^B)$. 


Within-population Coancestry

For population $i$, the coancestry of individuals $j,j'$ relative to the coancestry for all pairs of individuals in that population is

$$\beta^i_{jj'} = \frac{\theta^i_{jj'} - \theta^i_S}{1 - \theta^i_S}$$

and these average zero over all pairs of individuals in the population.

If the reference set is all pairs of alleles, one from each of two populations,

$$\beta^i_{jj'} = \frac{\theta^i_{jj'} - \theta^B}{1 - \theta^B}$$

The average $\beta^i_{ST}$ over all pairs of individuals in population $i$ is the population-specific $F^i_{ST}$, and averaging this over populations gives the global $F_{ST} = (\theta^S - \theta^B)/(1 - \theta^B)$. It is the ibd probability between individuals within populations relative to the ibd probability between populations.
Genotypic Measures

When individuals are distinguished:

\[(1 - F_{IT}) = (1 - F_{IS})(1 - F_{ST})\]

\[F_{IS} = \frac{F_{IT} - F_{ST}}{1 - F_{ST}}\]

This classic result also holds for population-specific values

\[(1 - F_{IT}^i) = (1 - F_{IS}^i)(1 - F_{ST}^i)\]

\[F_{IS}^i = \frac{F_{IT}^i - F_{ST}^i}{1 - F_{ST}^i}\]
Within-population Allelic Measures

For random union of gametes, when individual structure is not needed, the ibd probability $\theta^i_W$ for any distinct pair of alleles within population $i$ relative to the ibd probability between populations is

$$\beta^i_{WT} = \frac{\theta^i_W - \theta^B}{1 - \theta^B}$$

This is the population-specific $F^i_{ST}$ for alleles.

Averaging over populations:

$$\beta_{WT} = \frac{\theta^W - \theta^B}{1 - \theta^B}$$

and this is the global $F_{ST}$ for alleles.
**k-coefficients**

The coancestry coefficient is the probability of a pair of alleles being ibd.

For joint genotypic frequencies, and for a more detailed characterization of relatedness of two *non-inbred* individuals, we need the probabilities that they carry 0, 1, or 2 pairs of ibd alleles. For example: their two maternal alleles may be ibd or not ibd, and their two paternal alleles may be ibd or not.

The probabilities of two individuals having 0, 1 or 2 pairs of ibd alleles are written as $k_0, k_1, k_2$ and $\theta = \frac{1}{2}k_2 + \frac{1}{4}k_1$. 
Pr(c \equiv a) = 0.5, \ Pr(c \equiv b) = 0.5, \ k_1 = 1
Grandparent-grandchild

\[ Y(ab) \]

[Diagram: A diagram showing a relationship between nodes labeled Y(ab), V, c, d, and X(cd).]

\[ \Pr(c \equiv a) = 0.25, \quad \Pr(c \equiv b) = 0.25, \quad k_1 = 0.5 & k_0 = 0.5 \]
Half sibs

\[
\begin{array}{ccc}
& V(ef) & \\
/ & \downarrow & \downarrow \\
a & b & c & d \\
\downarrow & \downarrow & \downarrow & \downarrow \\
X & Y & \\
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
<th>0.5</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c \equiv e$</td>
<td>$c \equiv f$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>$b \equiv e$</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>$b \equiv f$</td>
</tr>
</tbody>
</table>

Therefore $k_1 = 0.5$ so $k_0 = 0.5$. 
Full sibs

\[ \begin{align*}
0.5 & \quad 0.5 \\
\text{b} & \equiv \text{d} & \text{b} & \not\equiv \text{d} \\
0.5 & \quad a & \equiv \text{c} & \quad 0.25 & \quad 0.25 \\
0.5 & \quad a & \not\equiv \text{c} & \quad 0.25 & \quad 0.25
\end{align*} \]

\[ k_0 = 0.25, k_1 = 0.50, k_2 = 0.25 \]
First cousins
## Non-inbred Relatives

<table>
<thead>
<tr>
<th>Relationship</th>
<th>$k_2$</th>
<th>$k_1$</th>
<th>$k_0$</th>
<th>$\theta = \frac{1}{2}k_2 + \frac{1}{4}k_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identical twins</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>Full sibs</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>Parent-child</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>Double first cousins</td>
<td>$\frac{1}{16}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{9}{16}$</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>Half sibs*</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>First cousins</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{1}{16}$</td>
</tr>
<tr>
<td>Unrelated</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

* Also grandparent-grandchild and avuncular (e.g. uncle-niece).
Estimates for Individuals
Estimation of β’s

Now that the various measures for individuals and populations are defined, it is straightforward to estimate them from genotypic or allelic data.

For any allele we set its indicator variable $x_u$ to be 1 if that allele is of type $u$ and to be 0 if it is not of type $u$. Then the expected value of $x_u$ or of $x_u^2$ is the allele frequency $\pi_u$. For any two distinct alleles, the expected value of the product of their $x_u$’s is $\pi_u^2 + \pi_u(1 - \pi_u)\theta$ where $\theta$ is the ibd probability for those two alleles.

We examine pairs of alleles to see whether or not they are the same type: i.e. they match. When two alleles match, the product of their indicators is 1 and the expected value of the proportion of matching pairs depends on $\theta$. We manipulate matching proportions to give estimates of the $\theta$’s.
Allelic Matching Proportions for Individuals

For individual $j$ in population $i$ the proportion of its distinct alleles that match is either 0 or 1. It is convenient to work with allele dosages $X_{ju}^i$ for the number of its alleles that are of type $u$ and write the matching proportion as

$$\tilde{M}_j^i = \frac{1}{2} \sum_u X_{ju}^i (X_{ju}^i - 1)$$

For biallelic SNPs, the reference allele dosage is $X_j^i$ (with values 0, 1 or 2) and the matching proportion is $(X_j^i - 1)^2$ - this is still 0 or 1. The expected value over replicates of the population is

$$\mathcal{E}(\tilde{M}_j^i) = M_T + (1 - M_T) F_j^i$$

where $M_T = \sum_u \pi_u^2$ is unknown.

We avoid having to know $M_T$ by estimating $F_j^i$ relative to either pairs of alleles from different individuals (i.e. coancestry) in the same population, or pairs of alleles from different populations.
Allelic Matching Proportions for Pairs of Individuals

The proportion of pairs of alleles, one from individual $j$ and one from $j'$ in population $i$ that match is 0, 0.5 or 1. These proportions can be expressed in terms of allele dosages

$$\tilde{M}_{jj'}^i = \frac{1}{4} \sum_u X_{ju}^i X_{j'u}^i$$

For biallelic SNPs, with reference allele dosages $X_j^i$ the matching proportion is $[1 + (X_j^i - 1)(X_{j'}^i - 1)]/2$ - this is still 0, 0.5 or 1. The expected value over replicates of the population is

$$\mathcal{E}(\tilde{M}_{jj'}^i) = M_T + (1 - M_T) \theta_{jj'}^i$$

Averaging over all pairs of individuals, the observed and expected matching proportion are

$$\tilde{M}_S^i = \frac{1}{n_i(n_i - 1)} \sum_{j=1}^{n_i} \sum_{j' \neq j} \tilde{M}_{jj'}^i, \quad \mathcal{E}(\tilde{M}_S^i) = M_T + (1 - M_T) \theta_S^i$$
Within-population Inbreeding Estimates

The inbreeding coefficient of an individual can be estimated as its allelic matching proportion relative to the matching proportion for pairs of individuals in the same population:

\[ \hat{\beta}_j^i = \frac{\tilde{M}_j^i - \tilde{M}_S^i}{1 - \tilde{M}_S^i}, \quad \text{Parameter} \quad \beta_j^i = \frac{F_j^i - \theta_S^i}{1 - \theta_S^i} \]

The estimates may be negative.

Averaging over individuals, with \( \tilde{M}_I^i = \sum_{j=1}^{n_i} \tilde{M}_j^i / n_i \),

\[ \hat{\beta}_I^i = \hat{F}_I^i = \frac{\tilde{M}_I^i - \tilde{M}_S^i}{1 - \tilde{M}_S^i}, \quad \text{Parameter} \quad \beta_I^i = F_I^i = \frac{F_I^i - \theta_S^i}{1 - \theta_S^i} \]

If there are data from several populations, we may use \( \tilde{M}_S^i \) as the average within-population coancestry, averaged over populations, so that inbreeding is estimated relative to this average.
Multiple Loci

The unweighted estimators for locus $l$ are of the form

$$\hat{\beta}_l = \frac{\text{Numerator}_l}{\text{Denominator}_l}$$

There are several ways to combine estimates over loci. Here, we weight by the denominators: With several loci, these can be extended to

$$\hat{\beta} = \frac{\sum_l \text{Numerator}_l}{\sum_l \text{Denominator}_l}$$

and these estimate $\beta$ if each locus has the same value of the $\theta$’s. Otherwise they estimate a weighted average of the different $\theta$ values, where the weights are functions of the allele frequencies at the loci in the sum.
1000 Genomes ACB Chr 22 Inbreeding

- **Beta**: 
  - Frequency: 0 2 4
  - Estimate Range: -0.10 to 0.10

- **Simple**: 
  - Frequency: 0 2 4
  - Estimate Range: -0.10 to 0.10

- **GCTA3**: 
  - Frequency: 0 2 4
  - Estimate Range: -0.10 to 0.10
1000 Genomes ACB Inbreeding

Individual Inbreeding

Estimate

-0.20  0.05

Beta Simple GCTA3

Individual

0  20  60  100
Comparison with Simple and Standard Inbreeding Estimates

For SNPs, omitting population superscripts and adding locus subscripts,

\[ \hat{\beta}_j = \frac{\sum_l (X_{jl} - 1)^2 - \tilde{M}_{Sl}}{1 - \tilde{M}_{Sl}} \]

There is a simple estimate, analogous to the previous MLE \( \hat{f} \) values for within-population inbreeding:

\[ \hat{f}_j = 1 - \frac{\tilde{H}_{jo}}{\tilde{H}_e} \]

where, with sample allele frequencies \( \tilde{p}_l = \frac{\sum_{j=1}^n X_{jl}}{2n} \),

\[ \tilde{H}_{jo} = \sum_l X_{jl}(2 - X_{jl}) , \quad \tilde{H}_e = \sum_l 2\tilde{p}_l(1 - \tilde{p}_l) \]

There is an estimate in GCTA, also using \( \tilde{p} \)

\[ \text{GCTA2}_j = \frac{\sum_l [X_{jl}^2 - (1 + 2\tilde{p}_l)X_{ijl} + 2\tilde{p}_l^2]}{2 \sum_l \tilde{p}_l(1 - \tilde{p}_l)} \]
Maximum-likelihood Inbreeding Estimates

Individual $j$ is either heterozygous or homozygous at SNP $l$, with probabilities $[2\pi_l(1 - \pi_l)F_j]$ and $[1 - 2\pi_l(1 - \pi_l)F_j]$. If SNPs are independent, the likelihood is

$$L(F) = \prod_{l}[2\pi_l(1 - \pi_l)F_j]^{X_j(2-X_j)}[1 - 2\pi_l(1 - \pi_l)F_j]^{(X_j-1)^2}$$

where $F_j$ is the pedigree-predicted inbreeding coefficient.

If the sample values $\tilde{\pi}_l$ are used instead of $\pi_l$ then this leads to an estimate of the within-population, individual-specific inbreeding coefficient $f_j = (F_j - \theta_S)/(1 - \theta_S)$.

In either case, the likelihood is most easily maximized by a grid search over valid values of $F_j$ or $f_j$. 
Within-population Coancestry Estimates

The coancestry coefficient of two individuals can be estimated as their allelic matching proportion relative to the matching proportion for pairs of individuals in the same population:

Estimate: \( \hat{\beta}_{jj'}^i = \frac{\tilde{M}_{jj'}^i - \tilde{M}_S^i}{1 - \tilde{M}_S^i} \), Parameter: \( \beta_{jj'}^i = \frac{\theta_{jj'}^i - \theta_S^i}{1 - \theta_S^i} \)

These estimates have been constructed to have an average value of zero over pairs of individuals in a population.
Simulated Data

The *sim* package was used to construct a base population with SNPs in linkage blocks of 20 Morgans. A set of 20 founders was selected for a defined pedigree, and 79,069 SNPs chosen independently to provide genotypes for 115 descendants in a defined pedigree. Only data for the non-founders were used in the analyses reported here. There are 17 individuals with inbreeding coefficient of 0.125, and 98 with inbreeding coefficient of zero, so $F_W = 0.0185$ for the sample of 115 individuals. For the 6,555 pairs of distinct individuals, the coancestries (and numbers of pairs with each value) are 0 (6340), 1/32 (1146), 1/16 (2176), 3/32 (786), 1/8 (1398), 5/32 (228), 3/16 (302), 1/4 (584) and 5/16 (150). The average coancestry $\theta_S = 0.0538$ is greater than the average inbreeding,
Simulated Data Inbreeding Estimates

Beta

GCTA

Individual

Individual

Estimate

Estimate
## Simulated Data Inbreeding Estimates

<table>
<thead>
<tr>
<th>Beta</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>-0.10 0.00 0.10</td>
</tr>
<tr>
<td></td>
<td>0 2 4</td>
</tr>
</tbody>
</table>

### Simple

<table>
<thead>
<tr>
<th>Simple</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>-0.10 0.00 0.10</td>
</tr>
<tr>
<td></td>
<td>0 2 4</td>
</tr>
</tbody>
</table>

### GCTA3

<table>
<thead>
<tr>
<th>GCTA3</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>-0.10 0.00 0.10</td>
</tr>
<tr>
<td></td>
<td>0 2 4</td>
</tr>
</tbody>
</table>
Inbreeding Parameters

For a single population:

The $\hat{\beta}_j$ are estimating $\frac{F_j - \theta_S}{1 - \theta_S}$.

The $\hat{f}_j$ are estimating

$$\frac{(F_j - \theta_S) - \frac{1}{2n}(1 + F_W - 2\theta_S)}{(1 - \theta_S) - \frac{1}{2n}(1 + F_W - 2\theta_S)} \approx \frac{F_j - \theta_S}{1 - \theta_S}$$

where $F_W = \sum_{j=1}^{n} F_j / n$.

The GCTA3$_j$ are estimating

$$\frac{[F_j - 2\psi_j + \theta_S - \frac{1}{2n}(3 + 4F_j - 8\psi_j - F_W + 2\theta_S)]}{1 - \theta_S - \frac{1}{2n}(1 + F_W - 2\theta_S)} \approx \frac{F_j - 2\psi_j + \theta_S}{1 - \theta_S}$$

where $\psi_j = \sum_{j' \neq j} \theta_{jj'}/(n - 1)$.
Comparison with Simple and Standard Coancestry Estimates

For SNPs, without population superscripts, with locus subscripts:

$$\hat{\beta}_{jj'} = \frac{\sum_{l} \left\{ \frac{1}{2} \left[ 1 + (X_{j} - 1)(X_{j'} - 1) \right] - \tilde{M}_S \right\}}{\sum_{l} (1 - \tilde{M}_S)}$$

There are simple estimates, analogous to the previous MLE $\hat{f}$ values for within-population inbreeding:

$$\hat{\theta}_{jj'}_{\text{Sim.}} = 1 - \frac{\sum_{l} (1 - \tilde{M}_{jj'_{l}})}{\sum_{l} 2\tilde{p}_{l}(1 - \tilde{p}_{l})}$$

where

$$\tilde{M}_{jj'_{l}} = \frac{1}{2} \left[ 1 + (X_{jl} - 1)(X_{j'l} - 1) \right]$$

Estimates in GCTA are

$$\text{GCTA}_{jj'} = \frac{\sum_{l} (X_{jl} - 2\tilde{p}_{l})(X_{j'l} - 2\tilde{p}_{l})}{4 \sum_{l} \tilde{p}_{l}(1 - \tilde{p}_{l})}$$
1000 Genomes Coancestry Estimates
Coancestry is relative, not absolute

The $\beta$ coancestry estimates have been applied to 1000 Genomes data, and compared to standard estimates, shown on next slide.

For the whole world, all 26 populations, as reference the $\beta$ estimates show a relatively narrow range of values within each African population (AFR) and lower African values than in the rest of the world, as expected from our understanding of higher genetic diversity within African than non-African populations from the migration history of modern humans. This pattern was not shown by the GCTA estimates - those estimates showed higher coancestry among African individuals than among non-Africans.

The wide plots for the Admixed American populations (AMR) reflect the admixture within those populations, with greater relatedness reflecting more ancestral commonality. When each continental group is used as a reference, all populations show low coancestry, except for the admixed AMR.
Coancestry is relative, not absolute


Chromosome 22 data from 1000 Genomes.
Continents (left to right): AFR, SAS, EUR, EAS, AMR

Populations (l to r): **AFR**: ACB, ASW, ESN, GWD, LWK, MSL, YRI; **SAS**: BEB, GIH, ITU, PJL, STU; **EUR**: CEU, FIN, GBR, IBS, TSI; **EAS**: CDX, CHB, CHS, JPT; **AMR**: KHV, CLM, MXL, PEL, PUR
Coancestry Parameters

For a single population:

The $\hat{\beta}_{jj'}$ are estimating $\frac{\theta_{jj'}-\theta_S}{1-\theta_S}$.

The $\hat{\theta}_{jj'}_{Sim.}$ are estimating $\frac{\theta_{jj'}-\theta_S}{(1-\theta_S)-\frac{1}{2n}(1+F_W-2\theta_S)} \approx \frac{\theta_{jj'}-\theta_S}{1-\theta_S}$.

The $GCTA_{jj'}$ are estimating

$$\frac{(\theta_{jj'}-\psi_j-\psi_{j'}+\theta_S)-\frac{1}{n}\left(\frac{1}{2}(2+F_j+F_{j'})-\psi_j-\psi_{j'}-F_W+\theta_S\right)}{(1-\theta_S)-\frac{1}{2n}(1+F_W-2\theta_S)} \approx \frac{(\theta_{jj'}-\psi_j-\psi_{j'}+\theta_S)}{1-\theta_S},$$

where

$$\psi_j = \frac{1}{n-1} \sum_{j' = 1, j' \neq j}^{n} \theta_{jj'}, \quad \theta_S = \frac{1}{n} \sum_{j = 1}^{n} \psi_j = \frac{1}{n(n-1)} \sum_{j=1}^{n} \sum_{j'=1, j' \neq j}^{n} \theta_{jj'}$$
Method of Moments for $k$ Coefficients

PLINK (Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R, Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J., & Sham, P.C. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. *American Journal of Human Genetics* 81,559–575.) uses MOM to estimate three IBD coefficients $k_0, k_1, k_2$ for non-inbred relatives. Two individuals are scored as being in IBS states 0,1,2.

<table>
<thead>
<tr>
<th>State</th>
<th>Genotypes</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 :</td>
<td>$(MM, MM), (mm, mm), (Mm, Mm)$</td>
<td>$(p_M^4 + 4p_M^2p_m^2 + p_m^4)k_0 + k_1(p_M^3 + p_Mp_m + p_m^3) + k_2$</td>
</tr>
<tr>
<td>1 :</td>
<td>$(MM, Mm), (Mm, MM), (mm, Mm), (Mm, mm)$</td>
<td>$4p_Mp_m(p_M^2 + p_m^2)k_0 + 2p_Mp_mk_1$</td>
</tr>
<tr>
<td>0 :</td>
<td>$(MM, mm), (mm, MM)$</td>
<td>$2p_M^2p_m^2k_0$</td>
</tr>
</tbody>
</table>
MOM Approach: $k_0$

Count the number of loci in IBS state $i; i = 0, 1, 2$. These numbers are $N_0, N_1, N_2$. The previous table gives the probabilities of IBS state $i$ given IBD state $j$. From

$$\text{Pr}(\text{IBS} = 0) = \text{Pr}(\text{IBS} = 0|\text{IBD} = 0) \text{Pr}(\text{IBD} = 0)$$

sum over loci $l$ to get

$$N_0 = \sum_l 2p_l^2(1-p_l)^2 \text{Pr}(\text{IBD} = 0)$$

This gives a moment estimate

$$\text{Pr}(\text{IBD} = 0) = \frac{N_0}{\sum_l 2p_l^2(1-p_l)^2}$$
MOM Approach: $k_1$

From

$$Pr(\text{IBS} = 1) = Pr(\text{IBS} = 1|\text{IBD} = 0) \Pr(\text{IBD} = 0)$$
$$+ Pr(\text{IBS} = 1|\text{IBD} = 1) \Pr(\text{IBD} = 1)$$

sum over loci to get

$$N_1 = Pr(\text{IBD} = 0) \sum_l 4p_l(1 - p_l)[p_l^2 + (1 - p_l)^2]$$
$$+ Pr(\text{IBD} = 1) \sum_l 2p_l(1 - p_l)$$

but we already have an estimate of $Pr(\text{IBD} = 0)$. Therefore

$$Pr(\text{IBD} = 1) = \frac{N_1 - \sum_l 4p_l(1 - p_l)[p_l^2 + (1 - p_l)^2] \Pr(\text{IBD} = 0)}{\sum_l 2p_l(1 - p_l)}$$
MOM Approach: $k_2$

Having estimated $k_0$ and $k_1$, find $\hat{k}_2$ as $1 - \hat{k}_0 - \hat{k}_1$.

Could then estimate $\theta$ as $\hat{k}_2/2 + \hat{k}_1/4$ or could go to a direct estimate.

These $k$-estimates assume a lack of inbreeding, which is unlikely in a population with relatedness, and they use sample allele frequencies in place of allele probabilities.
PLINK Example
Estimates for Populations
Matching Proportions for Populations

Population-structure measures are estimated by comparing within-population allelic matching proportions to those between populations.

When genotypic data are available, the between-individual within-population matching proportions use the averages over all pairs of individuals within the population, from above, is

$$\tilde{M}^i_S = \frac{1}{4n_i(n_i - 1)} \sum_u \sum_{j=1}^{n_i} \sum_{j' \neq j} X^i_{ju}X^i_{j'u}$$

and the average over pairs of populations of between-population matching proportions is

$$\tilde{M}^B = \frac{1}{r(r - 1)} \sum_u \sum_{i=1}^{r} \sum_{i' \neq i} \tilde{p}_{iu}\tilde{p}_{i'u}$$
Genotype-based $F_{ST}$ Estimates

The within- and between-population matching proportions for genotypic data set have expectations

\[
\mathcal{E}(\tilde{M}_S^i) = M_T + (1 - M_T)\theta_S^i \\
\mathcal{E}(\tilde{M}_B^B) = M_T + (1 - M_T)\theta_B^B
\]

so the population-specific, genotype-based, $F_{ST}$ estimate is

\[
\hat{\beta}_{ST}^i = \hat{F}_{ST}^i = \frac{\tilde{M}_S^i - \tilde{M}_B^B}{1 - \tilde{M}_B^B}
\]

Averaging over populations, the genotype-based global $F_{ST}$ parameter is

\[
\hat{\beta}_{ST} = \hat{F}_{ST} = \frac{\tilde{M}_S^S - \tilde{M}_B^B}{1 - \tilde{M}_B^B}
\]
SNP-genotype-based $F_{ST}$ Estimates

For SNPs, with allele dosages $X$:

\[
\tilde{M}_S^i = \frac{1}{2n_i(n_i - 1)} \sum_{j=1}^{n_i} \sum_{j' \neq j} [1 + (X_{ij}^i - 1)(X_{ij'}^i - 1)]
\]

\[
\tilde{M}_B^B = \frac{1}{r(r - 1)} \sum_{i=1}^{r} \sum_{i' \neq i} [\tilde{p}_i \tilde{p}_{i'} + (1 - \tilde{p}_i)(1 - \tilde{p}_{i'})]
\]
Allele-based Matching Proportions within Populations

When the genotypic structure of data is ignored, or not known, allelic data can be used to estimate $F_{ST}$.

If alleles from $n_i$ individuals are observed for population $i$, the observed matching proportion of allele pairs within this population is

$$\tilde{M}_W^i = \frac{1}{2n_i(2n_i - 1)} \sum_u \sum_{j=1}^{2n_i} \sum_{j'\neq j} x_{ju}x_{j'u}$$

$$= \frac{2n_i}{2n_i - 1} \sum_u \tilde{p}_{iu}^2 - \frac{1}{2n_i - 1}$$

where $\tilde{p}_{iu}$ is the sample frequency for allele $u$ for this population.

The expected value of this over replicates of the population is

$$\mathcal{E}(\tilde{M}_W^i) = M_T + (1 - M_T) \theta^i_W$$

where $M_T = \sum_u \pi_u^2$. 

229
Allele-based Matching Proportions between Populations

The observed proportion of matching allele pairs between populations $i$ and $i'$ is

$$\tilde{M}_{ii'}^B = \frac{1}{4n_in_{i'}} \sum_u \sum_{j=1}^{2n_i} \sum_{j'=1}^{2n_{i'}} x_{ju}x_{j'u}$$

$$= \sum_u \tilde{p}_{i'u} \tilde{p}_{i'u}$$

The expected value of this over replicates of the population is

$$\mathcal{E}(\tilde{M}_{ii'}^B) = M_T + (1 - M_T)\theta_{ii'}^B$$

and, averaging over all pairs of populations

$$\mathcal{E}(\tilde{M}^B) = M_T + (1 - M_T)\theta^B$$
**Allele-based Estimate of $F_{ST}$**

We avoid having to know $M_T$ by considering allele-pair matching within a population relative to the allele-pair matching between pairs of populations:

$$\hat{\beta}_i^{WT} = \hat{F}_i^{ST} = \frac{\tilde{M}_W^i - \tilde{M}_B^i}{1 - \tilde{M}_B}$$

and this has expected value $F_{WT}^i = (\theta_W^i - \theta_B^i)/(1 - \theta_B^i)$ which is the population-specific value.

Average over populations:

$$\hat{F}_{WT} = \hat{\beta}_{WT} = \frac{\tilde{M}_W - \tilde{M}_B}{1 - \tilde{M}_B}$$

and the parametric global value $F_{WT} = (\theta_W - \theta_B)/(1 - \theta_B)$. 

231
Simple Computing Equations for $F_{ST}$

For large sample sizes and $r$ populations:

$$
\tilde{M}_W^i \approx \sum_u \tilde{p}_{iu}^2
$$

$$
\tilde{M}_W = \frac{1}{r} \sum_{i=1}^r \tilde{M}_W^i = \sum_u \bar{p}_u^2 + \frac{r - 1}{r} \sum_u s_u^2
$$

where $\bar{p}_u = \frac{\sum_{i=1}^r \tilde{p}_{iu}}{r}$ is the mean allele frequency over populations, and $s_u^2 = \sum_{i=1}^r (\tilde{p}_{iu} - \bar{p}_u)^2/(r - 1)$ is the variance of allele frequencies over populations.

For all sample sizes:

$$
\tilde{M}_{B}^{ii'} = \sum_u \tilde{p}_{iu} \tilde{p}_{i'u}
$$

$$
\tilde{M}_B = \frac{1}{r(r - 1)} \sum_{i=1}^r \sum_{i' \neq i} \tilde{M}_{B}^{ii'} = \sum_u \bar{p}_u^2 - \frac{1}{r} \sum_u s_u^2
$$
Simple Allele-based Estimates for $F_{ST}$

The allele-based population-specific estimates are

$$
\hat{F}_{WT}^i = \frac{\sum_u [(\tilde{p}_{iu}^2 - \tilde{p}_u^2) + s_{u}^2]}{\sum_u [\tilde{p}_u(1 - \tilde{p}_u) + \frac{1}{r} s_{u}^2]}
$$

The corresponding global parameters are

$$
\hat{F}_{WT} = \frac{\sum_u s_{u}^2}{\sum_u [\tilde{p}_u(1 - \tilde{p}_u) + \frac{1}{r} s_{u}^2]}
$$
SNP-allele-based Estimates for $F_{ST}$

For SNPs with two alleles, write $\tilde{p}_i$ for the reference allele sample frequency for population $i$. In this case, $\sum_u \bar{p}_u (1 - \bar{p}_u) = 2\bar{p}(1 - \bar{p})$ where $\bar{p} = \sum_{i=1}^r \tilde{p}_i / r$, and $\sum_u s_u^2 = 2s^2$ where $s^2 = \sum_{i=1}^r (\tilde{p} - \bar{p})^2 / (r - 1)$.

The population-specific estimates are

$$\hat{F}_{WT}^i = \frac{\tilde{p}_i^2 - \bar{p}^2 + s^2}{\bar{p}(1 - \bar{p}) + \frac{1}{r}s^2}$$

The global estimates are

$$\hat{F}_{WT} = \frac{s^2}{\bar{p}(1 - \bar{p}) + \frac{1}{r}s^2}$$
SNP-allele-based Estimates of $F_{ST}$ for Two Populations

For SNP studies with two populations, with reference allele sample frequencies $\tilde{p}_1, \tilde{p}_2$, $\tilde{p} = (\tilde{p}_1 + \tilde{p}_2)/2$ and $s^2 = (\tilde{p}_1 - \tilde{p}_2)^2/2$.

The population-specific estimates are

$$\hat{\beta}_{WT}^1 = \hat{F}_{WT}^1 = \frac{(\tilde{p}_1 - \tilde{p}_2)(2\tilde{p}_1 - 1)}{\tilde{p}_1(1 - \tilde{p}_2) + \tilde{p}_2(1 - \tilde{p}_1)}$$

$$\hat{\beta}_{WT}^2 = \hat{F}_{WT}^2 = \frac{(\tilde{p}_2 - \tilde{p}_1)(2\tilde{p}_2 - 1)}{\tilde{p}_1(1 - \tilde{p}_2) + \tilde{p}_2(1 - \tilde{p}_1)}$$

One of these two may be negative.

The global estimate is

$$\hat{\beta}_{WT} = \hat{F}_{WT} = \frac{(\tilde{p}_1 - \tilde{p}_2)^2}{\tilde{p}_1(1 - \tilde{p}_2) + \tilde{p}_2(1 - \tilde{p}_1)}$$

This must be positive.
Effect of Number of Loci
Worldwide Autosomal-STR Survey

Buckleton et al, Forensic Sci Int, 2016 compiled a survey of 250 published papers showing allele frequencies at 24 forensic STR markers from 446 populations in 8 ancestral groups. Represents data from 494,473 individuals.

The ancestral groups were identified by a combination of clustering and geographic criteria.

Moment estimates were obtained for each locus $l$ in each population $i$ from

$$\hat{\beta}^i_{WT_l} = \frac{\tilde{M}^i_{WT_l} - \tilde{M}^B_l}{1 - \tilde{M}^B_l}$$

The “T” may refer to the group of populations with the same continental ancestry, or it may refer to the entire set of populations.
### STR Survey: $\widehat{\beta}$ Values for Groups and Loci

<table>
<thead>
<tr>
<th>Locus</th>
<th>Africa</th>
<th>AusAb</th>
<th>Asian</th>
<th>Cauc</th>
<th>Hisp</th>
<th>IndPK</th>
<th>NatAm</th>
<th>Poly</th>
<th>Aver.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF1PO</td>
<td>0.003</td>
<td>0.002</td>
<td>0.008</td>
<td>0.008</td>
<td>0.002</td>
<td>0.007</td>
<td>0.055</td>
<td>0.026</td>
<td>0.011</td>
</tr>
<tr>
<td>D1S1656</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.011</td>
</tr>
<tr>
<td>D2S441</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
<td>0.003</td>
<td>0.021</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.020</td>
</tr>
<tr>
<td>D2S1338</td>
<td>0.009</td>
<td>0.004</td>
<td>0.011</td>
<td>0.017</td>
<td>0.013</td>
<td>0.003</td>
<td>0.023</td>
<td>0.005</td>
<td>0.031</td>
</tr>
<tr>
<td>D3S1358</td>
<td>0.004</td>
<td>0.010</td>
<td>0.009</td>
<td>0.006</td>
<td>0.012</td>
<td>0.040</td>
<td>0.079</td>
<td>0.001</td>
<td>0.025</td>
</tr>
<tr>
<td>D5S818</td>
<td>0.002</td>
<td>0.013</td>
<td>0.009</td>
<td>0.008</td>
<td>0.014</td>
<td>0.018</td>
<td>0.044</td>
<td>0.007</td>
<td>0.029</td>
</tr>
<tr>
<td>D6S1043</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.016</td>
</tr>
<tr>
<td>D7S820</td>
<td>0.004</td>
<td>0.021</td>
<td>0.010</td>
<td>0.007</td>
<td>0.007</td>
<td>0.046</td>
<td>0.030</td>
<td>0.005</td>
<td>0.026</td>
</tr>
<tr>
<td>D8S1179</td>
<td>0.003</td>
<td>0.007</td>
<td>0.012</td>
<td>0.006</td>
<td>0.002</td>
<td>0.031</td>
<td>0.020</td>
<td>0.008</td>
<td>0.019</td>
</tr>
<tr>
<td>D10S1248</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
<td>0.004</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.007</td>
</tr>
<tr>
<td>D12S391</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.003</td>
<td>0.020</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.010</td>
</tr>
<tr>
<td>D13S317</td>
<td>0.015</td>
<td>0.016</td>
<td>0.013</td>
<td>0.008</td>
<td>0.014</td>
<td>0.025</td>
<td>0.050</td>
<td>0.014</td>
<td>0.038</td>
</tr>
<tr>
<td>D16S539</td>
<td>0.007</td>
<td>0.002</td>
<td>0.015</td>
<td>0.006</td>
<td>0.009</td>
<td>0.005</td>
<td>0.048</td>
<td>0.004</td>
<td>0.021</td>
</tr>
<tr>
<td>D18S51</td>
<td>0.011</td>
<td>0.012</td>
<td>0.014</td>
<td>0.006</td>
<td>0.004</td>
<td>0.010</td>
<td>0.033</td>
<td>0.003</td>
<td>0.018</td>
</tr>
<tr>
<td>D19S433</td>
<td>0.009</td>
<td>0.001</td>
<td>0.009</td>
<td>0.010</td>
<td>0.014</td>
<td>0.000</td>
<td>0.022</td>
<td>0.014</td>
<td>0.023</td>
</tr>
<tr>
<td>D21S11</td>
<td>0.014</td>
<td>0.012</td>
<td>0.013</td>
<td>0.007</td>
<td>0.006</td>
<td>0.023</td>
<td>0.067</td>
<td>0.018</td>
<td>0.021</td>
</tr>
<tr>
<td>D22S1045</td>
<td>0.000</td>
<td>0.000</td>
<td>0.007</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.015</td>
</tr>
<tr>
<td>FGA</td>
<td>0.002</td>
<td>0.009</td>
<td>0.012</td>
<td>0.004</td>
<td>0.007</td>
<td>0.016</td>
<td>0.021</td>
<td>0.006</td>
<td>0.013</td>
</tr>
<tr>
<td>PENTAD</td>
<td>0.008</td>
<td>0.000</td>
<td>0.012</td>
<td>0.012</td>
<td>0.002</td>
<td>0.017</td>
<td>0.000</td>
<td>0.000</td>
<td>0.022</td>
</tr>
<tr>
<td>PENTAE</td>
<td>0.002</td>
<td>0.000</td>
<td>0.017</td>
<td>0.006</td>
<td>0.003</td>
<td>0.012</td>
<td>0.000</td>
<td>0.000</td>
<td>0.020</td>
</tr>
<tr>
<td>SE33</td>
<td>0.000</td>
<td>0.000</td>
<td>0.012</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.004</td>
</tr>
<tr>
<td>TH01</td>
<td>0.022</td>
<td>0.001</td>
<td>0.022</td>
<td>0.016</td>
<td>0.018</td>
<td>0.014</td>
<td>0.071</td>
<td>0.017</td>
<td>0.071</td>
</tr>
<tr>
<td>TPOX</td>
<td>0.019</td>
<td>0.087</td>
<td>0.016</td>
<td>0.011</td>
<td>0.007</td>
<td>0.018</td>
<td>0.064</td>
<td>0.031</td>
<td>0.035</td>
</tr>
<tr>
<td>VWA</td>
<td>0.009</td>
<td>0.007</td>
<td>0.017</td>
<td>0.007</td>
<td>0.012</td>
<td>0.022</td>
<td>0.028</td>
<td>0.005</td>
<td>0.023</td>
</tr>
<tr>
<td>All Loci</td>
<td>0.006</td>
<td>0.014</td>
<td>0.010</td>
<td>0.007</td>
<td>0.008</td>
<td>0.018</td>
<td>0.043</td>
<td>0.011</td>
<td>0.022</td>
</tr>
</tbody>
</table>
Population-specific STR Estimates

Each vertical line represents one population. The length of the line is the 95% confidence interval obtained by bootstrapping over loci.
$F_{ST}$ is relative, not absolute

The white box plot is for within-population matching compared to average matching among all pairs of populations. The grey box plot is for within-population matching compared to average matching among all pairs of populations in the same region.
\( F_{ST} \) is relative, not absolute

Using data from the 1000 genomes, using 1,097,199 SNPs on chromosome 22.

For the samples originating from Africa, there is a larger \( F_{WT} \), \( \hat{\beta}_{WT} = 0.013 \), with Africa as a reference set than there is, \( \hat{\beta}_{WT} = -0.099 \), with the world as a reference set. African populations tend to be more different from each other on average than do any two populations in the world on average.

The opposite was found for East Asian populations: there is a smaller \( F_{WT} \), \( \hat{\beta}_{WT} = 0.013 \) with East Asia as a reference set than there is, \( \hat{\beta}_{WT} = 0.225 \) with the world as a reference set. East Asian populations are more similar to each other than are any pair of populations in the world.
**NP** $F_{ST}$’s are relative, not absolute

Blue box: Population relative to pairs of populations in same continent.
Red box: Population relative to pairs of populations in whole world.
\( \hat{\beta}_{WT} \) in LCT Region: 3 Populations

HapMap III Chromosome 2

Position

Beta-W

CEU
YRI
CHB

LCT
\( \hat{\beta}_{WT} \) in LCT Region: 11 Populations

HapMap III Chromosome 2

Position

Beta–W

CEU
M KK
Other

LCT
MKK Population

“The Maasai are a pastoral people in Kenya and Tanzania, whose traditional diet of milk, blood and meat is rich in lactose, fat and cholesterol. In spite of this, they have low levels of blood cholesterol, and seldom suffer from gallstones or cardiac diseases.

Analysis of HapMap 3 data using Fixation Index (Fst) identified genomic regions and single nucleotide polymorphisms (SNPs) as strong candidates for recent selection for lactase persistence and cholesterol regulation in 143156 founder individuals from the Maasai population in Kinyawa, Kenya (MKK). The strongest signal identified by all three metrics was a 1.7 Mb region on Chr2q21. This region contains the gene LCT (Lactase) involved in lactase persistence.”

Weir & Cockerham 1984 Model

W&C assumed all populations have equal evolutionary histories ($\theta^i = \theta$, all $i$) and are independent ($\theta^{ii'} = 0$, all $i' \neq i$), and they worked with overall allele frequencies that were weighted by sample sizes

$$\bar{p}_u = \frac{1}{\sum_i n_i} \sum_i n_i \tilde{p}_{iu}$$

If $\theta = 0$, these weighted means have minimum variance.
Weir & Cockerham 1984 Model

Two mean squares were constructed for each allele:

\[ MSB_u = \frac{1}{r-1} \sum_{i=1}^{r} n_i (\tilde{p}_{iu} - \bar{p}_u)^2 \]

\[ MSW_u = \frac{1}{\sum_i (n_i - 1)} \sum_i n_i \tilde{p}_{iu}(1 - \tilde{p}_{iu}) \]

These have expected values

\[ E(MSB_u) = p_u(1-p_u)[(1-\theta) + n_c\theta] \]

\[ E(MSW_u) = p_u(1-p_u)(1-\theta) \]

where \( n_c = (\sum_i n_i - \sum_i n_i^2 / \sum_i n_i)/(r-1) \). The Weir & Cockerham weighted allele-based estimator of \( \theta \) (or \( F_{ST} \)) is

\[ \hat{\theta}_{WC} = \frac{\sum_u (MSB_u - MSW_u)}{MSB_u + (n_c - 1)MSW_u} \]
Weir & Cockerham 1984 Estimator

Under the $\beta$ approach described here, the Weir and Cockerham estimator has expectation

$$\mathcal{E}(\hat{\theta}_{WC}) = \frac{\theta^W_c - \theta^B_c + Q}{1 - \theta^B_c + Q}$$

instead of

$$\frac{\theta^W - \theta^B}{1 - \theta^B}$$

where

$$\theta^W_c = \frac{\sum_i n^c_i \theta^i}{\sum_i n^c_i}$$

$$\theta^B_c = \frac{\sum_{i\neq i'} n_i n_{i'} \theta^{ii'}}{\sum_{i\neq i'} n_i n_{i'}}$$

$$n^c_i = n_i - \frac{n_i^2}{\sum_i n_i}$$

$$n_c = \frac{1}{r-1} \sum_i n^c_i$$

$$Q = \frac{1}{(r-1)n_c} \sum_i \left( \frac{n_i}{\bar{n}} - 1 \right) \theta^i$$

If the Weir and Cockerham model holds ($\theta^i = \theta$), or if $n_i = n$, or if $n_c$ is large, then $Q = 0$. 

248
*WC84 vs Beta Allele-based Estimators*

$F_{WT}$ estimates for HapMap III, using all 87,592 SNPs on chromosome 1.

(Bhatia et al, 2013, Genome Research 23:1514-1521.)
WC vs Unweighted Estimator

\[ F_{WT} \] estimates for HapMap III, using the 42,463 SNPs on chromosome 1 that have at least five copies of the minor allele in samples from all 11 populations.

(Bhatia et al, 2013, Genome Research 23:1514-1521.)
“RELPAIR” calculations

This approach compares the probabilities of two genotypes under alternative hypotheses; $H_0$: the individuals have a specified relationship, versus $H_1$: the individuals are unrelated. The alternative is that $k_0 = 1, k_1 = k_2 = 0$ so the likelihood ratios for the two hypotheses are:

\[
\begin{align*}
LR(MM, MM) &= k_0 + k_1/p_M + k_2/p_M^2 \\
LR(mm, mm) &= k_0 + k_1/p_m + k_2/p_m^2 \\
LR(Mm, Mm) &= k_0 + k_1/(4p_Mp_m) + k_2/(2p_Mp_m) \\
LR(MM, Mm) &= k_0 + k_1/(2p_M) \\
LR(mm, Mm) &= k_0 + k_1/(2p_m) \\
LR(MM, mm) &= k_0
\end{align*}
\]
**Testing relationship**

Hypotheses about alternative pairs of relationships may be tested with likelihood ratio test statistics. These ratios are the probability of the observed pair of genotypes under one hypothesis divided by the probability under the alternative hypothesis. These ratios are multiplied over (independent) loci.

Each hypothesis is described by a set of $k$’s and there are three hypotheses likely to be of interest:
1. individuals are unrelated ($k_0 = 1$)
2. individuals have a specified (or annotated) relationship ($k$’s specified)
   or 3. individuals are related to an extent measured by the estimated $k$’s.