REGRESSION MODELS

ANOVA
RECAP:

- **Continuous Outcome?**
 - NO: Logistic regression and other methods
 - YES: Linear Regression
 - Examine main effects considering predictors of interest, and confounders
 - Test effect modification if scientifically relevant
 - Compute and plot Residuals, Assess influence
 - Do the assumptions appear reasonable?
 - NO: Modify approach
 - YES: REPORT
What if the independent variables of interest are categorical?

In this case, comparing the mean of the continuous outcome in the different categories may be of interest.

This is what is called ANalysis Of VAriance.

We will show that it is just a special case of linear regression.
ANOVA – a special case of linear regression

LINEAR REGRESSION

One-way Analysis of Variance

One Categorical POI

Two-way Analysis of Variance

Two Categorical POIs

Analysis of Covariance

One Categorical POI + One continuous predictor

Uses dummy variables to represent categorical variables!
Outline

- **Motivation:** We will consider some examples of ANOVA and show that they are special cases of linear regression
- **ANOVA as a regression model**
 - Dummy variables
- **One-way ANOVA models**
 - Contrasts
 - Multiple comparisons
- **Two-way ANOVA models**
 - Interactions
- **ANCOVA models**
ANOVA/ANCOVA: Motivation

- Let’s investigate if genetic factors are associated with cholesterol levels.

 - Ideally, you would have a **confirmatory analysis** of scientific hypotheses formulated prior to data collection.

 - Alternatively, you could consider an **exploratory analysis** – hypotheses generation for future studies.
ANOVA/ANCOVA: Motivation

Scientific hypotheses of interest:

- Assess the effect of rs174548 on cholesterol levels.

- Assess the effect of rs174548 and sex on cholesterol levels
 - Does the effect of rs174548 on cholesterol differ between males and females?

- Assess the effect of rs174548 and age on cholesterol levels
 - Does the effect of rs174548 on cholesterol differ depending on subject’s age?
ANOVA: One-Way Model

Motivation:

- Scientific question:
 - Assess the effect of rs174548 on cholesterol levels.
Here are some descriptive summaries:

```r
> tapply(chol, factor(rs174548), mean)
     0      1      2
181.0617 187.8639 186.5000

> tapply(chol, factor(rs174548), sd)
     0      1      2
 21.13998 23.74541 17.38333
```
Motivation: Example

Another way of getting the same results:

```r
> by(chol, factor(rs174548), mean)
  factor(rs174548): 0
  [1] 181.0617

  factor(rs174548): 1
  [1] 187.8639

  factor(rs174548): 2
  [1] 186.5

> by(chol, factor(rs174548), sd)
  factor(rs174548): 0

  factor(rs174548): 1
  [1] 23.74541

  factor(rs174548): 2
  [1] 17.38333
```
Motivation: Example

Is rs174548 associated with cholesterol?

R command: boxplot(chol ~ factor(rs174548))
Motivation: Example

Another graphical display:

R command:
```
plot.design(chol ~ factor(rs174548))
```
Motivation: Example

Feature:

- How do the mean responses compare across different groups?
 - Categorical/qualitative predictor
One-way ANOVA as a regression model
ANalysis Of VARIance Models (ANOVA)

- Compares the means of several populations

Assumptions for Classical ANOVA Framework:
- Independence
- Normality
- Equal variances
ANalysis Of VAriance Models (ANOVA)

- Compares the means of several populations
ANalysis Of VAriance Models (ANOVA)

- Compares the means of several populations
 - Counter-intuitive name!
In both data sets, the true population means are: 3 (A), 5 (B), 7(C)

Situation 1

Low variance within groups

Situation 2

High variance within groups

Where do you expect to detect difference between population means?
ANalysis Of VAriance Models (ANOVA)

- Compares the means of several populations
 - Counter-intuitive name!
 - Underlying concept:
 - To assess whether the population means are equal, compares:
 - Variation between the sample means (MSR) to
 - Natural variation of the observations within the samples (MSE).
 - The larger the MSR compared to MSE the more support that there is a difference in the population means!
 - The ratio MSR/MSE is the F-statistic.

- We can make these comparisons with multiple linear regression: the different groups are represented with “dummy” variables
ANOVA as a multiple regression model

- **Dummy Variables:**

 - Suppose you have a categorical variable C with k categories 0, 1, 2, ..., k-1. To represent that variable we can construct k-1 dummy variables of the form

\[
x_1 = \begin{cases}
1, & \text{if subject is in category 1} \\
0, & \text{otherwise}
\end{cases}
\]

\[
x_2 = \begin{cases}
1, & \text{if subject is in category 2} \\
0, & \text{otherwise}
\end{cases}
\]

\[
\ldots
\]

\[
x_{k-1} = \begin{cases}
1, & \text{if subject is in category k-1} \\
0, & \text{otherwise}
\end{cases}
\]

The omitted category (here category 0) is the **reference group**.
ANOVA as a multiple regression model

- Dummy Variables:
 - Back to our motivating example:
 - Predictor: rs174548 (coded 0=C/C, 1=C/G, 2=G/G)
 - Outcome (Y): cholesterol

Let’s take C/C as the reference group.

\[
x_1 = \begin{cases}
1, & \text{if code 1 (C/G)} \\
0, & \text{otherwise}
\end{cases}
\]

\[
x_2 = \begin{cases}
1, & \text{if code 2 (G/G)} \\
0, & \text{otherwise}
\end{cases}
\]
ANOVA as a multiple regression model

<table>
<thead>
<tr>
<th>rs174548</th>
<th>Mean cholesterol</th>
<th>X_1</th>
<th>X_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/C</td>
<td>μ_0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C/G</td>
<td>μ_1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G/G</td>
<td>μ_2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
ANOVA as a multiple regression model

Regression with Dummy Variables:

Example:

Model: \(\text{E}[Y|x_1, x_2] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \)

Interpretation of model parameters?
ANOVA as a multiple regression model

<table>
<thead>
<tr>
<th>Mean</th>
<th>Regression Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_0</td>
<td>β_0</td>
</tr>
<tr>
<td>μ_1</td>
<td>$\beta_0 + \beta_1$</td>
</tr>
<tr>
<td>μ_2</td>
<td>$\beta_0 + \beta_2$</td>
</tr>
</tbody>
</table>
ANOVA as a multiple regression model

Regression with Dummy Variables:

Example:

Model: \(E[Y|x_1, x_2] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \)

Interpretation of model parameters?

- \(\mu_0 = \beta_0 \): mean cholesterol when rs174548 is C/C
- \(\mu_1 = \beta_0 + \beta_1 \): mean cholesterol when rs174548 is C/G
- \(\mu_2 = \beta_0 + \beta_2 \): mean cholesterol when rs174548 is G/G
ANOVA as a multiple regression model

- Regression with Dummy Variables:
 - Example:
 $$\text{Model: } E[Y|x_1, x_2] = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- Interpretation of model parameters?
 - $$\mu_0 = \beta_0$$: mean cholesterol when rs174548 is C/C
 - $$\mu_1 = \beta_0 + \beta_1$$: mean cholesterol when rs174548 is C/G
 - $$\mu_2 = \beta_0 + \beta_2$$: mean cholesterol when rs174548 is G/G

- Alternatively
 - $$\beta_1$$: difference in mean cholesterol levels between groups with rs174548 equal to C/G and C/C ($$\mu_1 - \mu_0$$).
 - $$\beta_2$$: difference in mean cholesterol levels between groups with rs174548 equal to G/G and C/C ($$\mu_2 - \mu_0$$).
ANOVA: One-Way Model

Goal:

- Compare the means of K independent groups (defined by a categorical predictor)

 Statistical Hypotheses:
 - (Global) Null Hypothesis:
 \[H_0: \mu_0 = \mu_1 = \ldots = \mu_{K-1} \quad \text{or, equivalently,} \]
 \[H_0: \beta_1 = \beta_2 = \ldots = \beta_{K-1} = 0 \]

 - Alternative Hypothesis:
 \[H_1: \text{not all means are equal} \]

- If the means of the groups are not all equal (i.e. you rejected the above H_0), determine which ones are different (multiple comparisons)
Estimation and Inference

- **Global Hypotheses**

 \(H_0: \mu_1 = \mu_2 = \ldots = \mu_K \) vs. \(H_1: \) not all means are equal

 \(H_0: \beta_1 = \beta_2 = \ldots = \beta_{K-1} = 0 \)

- **Analysis of variance table**

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>K-1</td>
<td>SSR= (\sum_i (\bar{y}_i - \bar{y})^2)</td>
<td>MSR= (\frac{SSR}{(K-1)})</td>
<td>MSR/ MSE</td>
</tr>
<tr>
<td>Residual</td>
<td>n-K</td>
<td>SSE= (\sum_{i,j} (y_{ij} - \bar{y}_i)^2)</td>
<td>MSE= (\frac{SSE}{n-K})</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>n-1</td>
<td>SST= (\sum_{i,j} (y_{ij} - \bar{y})^2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANOVA: One-Way Model

How to fit a one-way model as a regression problem?

- Need to use “dummy” variables
 - Create on your own (can be tedious!)
 - Most software packages will do this for you
 - R creates dummy variables in the background as long as you state you have a categorical variable (may need to use: factor)
ANOVA: One-Way Model

By hand:
Creating “dummy” variables:

```r
> dummy1 = 1*(rs174548==1)
> dummy2 = 1*(rs174548==2)
```

Fitting the ANOVA model:

```r
> fit0 = lm(chol ~ dummy1 + dummy2)
> summary(fit0)
Call:
  lm(formula = chol ~ dummy1 + dummy2)

Residuals:
            Min          1Q    Median          3Q         Max
-64.06167 -15.91338  -0.06167  14.93833  59.13605

Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
(Intercept)                181.062    1.455 124.411  < 2e-16 ***
dummy1                     6.802      2.321   2.930  0.00358 **
dummy2                     5.438      4.540   1.198  0.23167    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221,   Adjusted R-squared: 0.01718
F-statistic: 4.487 on 2 and 397 DF,  p-value: 0.01184

> anova(fit0)
(245,544),(947,918)
Analysis of Variance Table

Response: chol

DF  Sum Sq Mean Sq  F value Pr(>F)   
dummy1 1    3624 3624.0 7.5381 0.006315 **
dummy2 1     690  690.0 1.4350 0.231665    
Residuals 397 190875   481
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
**ANOVA: One-Way Model**

```r
> fit1.1 = lm(chol ~ factor(rs174548))
> summary(fit1.1)
Call:
lm(formula = chol ~ factor(rs174548))

Residuals:
 Min 1Q Median 3Q Max
-64.06167 -15.91338 -0.06167 14.93833 59.13605

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 181.062 1.455 124.411 < 2e-16 ***
factor(rs174548)1 6.802 2.321 2.930 0.00358 **
factor(rs174548)2 5.438 4.540 1.198 0.23167

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718
F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184

> anova(fit1.1)
Analysis of Variance Table

Response: chol Df Sum Sq Mean Sq F value Pr(>F)
factor(rs174548) 2 4314 2157 4.48654 0.01184 *
Residuals 397 190875 481

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```

**Better:**
Let R do it for you!
ANOVA: One-Way Model

Your turn!

- Compare model fit results (fit0 & fit1.1)
  What do you conclude?
### ANOVA: One-Way Model

```r
> fit0 = lm(chol ~ dummy1 + dummy2)
> summary(fit0)

Call:
 lm(formula = chol ~ dummy1 + dummy2)

Residuals:
 Min 1Q Median 3Q Max
-64.06167 -15.91338 -0.06167 14.93833 59.13605

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 181.062 1.455 124.41 < 2e-16 ***
dummy1 6.802 2.321 2.930 0.00358 **
dummy2 5.438 4.540 1.198 0.23167

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718
F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184

> anova(fit0)

Analysis of Variance Table

Response: chol
 Df Sum Sq Mean Sq F value Pr(>F)
dummy1 1 3624.0 3624.0 7.53815 0.006315 **
dummy2 1 690.0 690.0 1.43500 0.231665
Residuals 397 190875 481.0

> fit1.1 = lm(chol ~ factor(rs174548))
> summary(fit1.1)

Call:
 lm(formula = chol ~ factor(rs174548))

Residuals:
 Min 1Q Median 3Q Max
-64.06167 -15.91338 -0.06167 14.93833 59.13605

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 181.062 1.455 124.41 < 2e-16 ***
dummy(rs174548)1 6.802 2.321 2.930 0.00358 **
dummy(rs174548)2 5.438 4.540 1.198 0.23167

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718
F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184

> anova(fit1.1)

Analysis of Variance Table

Response: chol
 Df Sum Sq Mean Sq F value Pr(>F)
factor(rs174548) 2 4314.4 2157.2 4.4865 0.01184 *
Residuals 397 190875 481.0

```
ANOVA: One-Way Model

```r
> fit0 = lm(chol ~ dummy1 + dummy2)
> summary(fit0)
Call:
 lm(formula = chol ~ dummy1 + dummy2)
Residuals:
 Min 1Q Median 3Q Max
-64.06167 -15.91338 -0.06167 14.93833 59.13605
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 181.062 1.455 124.411 < 2e-16 ***
dummy1 6.802 2.321 2.930 0.00358 **
dummy2 5.438 4.540 1.198 0.23167

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718
F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184

> anova(fit0)
Analysis of Variance Table
Response: chol
 Df Sum Sq Mean Sq F value Pr(>F)
dummy1 1 3624.7 3624.7 4.4875327 0.01184*
dummy2 1 690 690.0 0.7580402 0.38587
Residuals 397 190875 481.0

> fit1.1 = lm(chol ~ factor(rs174548))
> summary(fit1.1)
Call:
 lm(formula = chol ~ factor(rs174548))
Residuals:
 Min 1Q Median 3Q Max
-64.06167 -15.91338 -0.06167 14.93833 59.13605
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 181.062 1.455 124.411 < 2e-16 ***
factor(rs174548)1 6.802 2.321 2.930 0.00358 **
factor(rs174548)2 5.438 4.540 1.198 0.23167

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718
F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184

> anova(fit1.1)
Analysis of Variance Table
Response: chol
 Df Sum Sq Mean Sq F value Pr(>F)
factor(rs174548) 2 4314 2157.0 4.4865374 0.01184 *
Residuals 397 190875 481.0

> 1 - pf(4.4865, 2, 397)
[1] 0.01183671
> 1 - pf(((3624+690)/2)/481, 2, 397)
[1] 0.01186096
```
Let’s interpret the regression model results!
- What is the interpretation of the regression model coefficients?

```r
> fit1.1 = lm(chol ~ factor(rs174548))
> summary(fit1.1)
Call: lm(formula = chol ~ factor(rs174548))
Residuals:
 Min 1Q Median 3Q Max
-64.06167 -15.91338 -0.06167 14.93833 59.13605
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 181.062 1.455 124.411 < 2e-16
factor(rs174548)1 6.802 2.321 2.930 0.00358
factor(rs174548)2 5.438 4.540 1.198 0.23167

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718
F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184

> anova(fit1.1)
Analysis of Variance Table

Response: chol

 Df Sum Sq Mean Sq F value Pr(>F)
factor(rs174548) 2 4314.0 2157.0 4.4865 0.01184 *
Residuals 397 19087.5 48.1

```
ANOVA: One-Way Model

\[
\begin{align*}
\text{Estimated mean cholesterol for C/C group: } & 181.062 \text{ mg/dl} \\
\text{Estimated difference in mean cholesterol levels between C/G and C/C groups: } & 6.802 \text{ mg/dl} \\
\text{Estimated difference in mean cholesterol levels between G/G and C/C groups: } & 5.438 \text{ mg/dl}
\end{align*}
\]

```
> fit1.1 = lm(chol ~ factor(rs174548))
> summary(fit1.1)
Call:
lm(formula = chol ~ factor(rs174548))

Residuals:
 Min 1Q Median 3Q Max
-64.06167 -15.91338 -0.06167 14.93833 59.13605

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 181.062 1.455 124.411 < 2e-16
factor(rs174548)1 6.802 2.321 2.930 0.00358
factor(rs174548)2 5.438 4.540 1.198 0.23167

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718
F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184

> anova(fit1.1)
Analysis of Variance Table

Response: chol
 Df Sum Sq Mean Sq F value Pr(>F)
factor(rs174548) 2 4314 2157 4.4865 0.01184 *
Residuals 397 190875 481

```
ANOVA: One-Way Model

Overall F-test shows a significant p-value. We reject the null hypothesis that the mean cholesterol levels are the same across groups defined by rs174548 (p=0.01184).

- This does not tell us which groups are different! (Need to perform multiple comparisons! More soon...)
ANOVA: One-Way Model

Alternative form: (better if you will perform multiple comparisons)

```r
> fit1.2 = lm(chol ~ -1 + factor(rs174548))
> summary(fit1.2)
Call:
 lm(formula = chol ~ -1 + factor(rs174548))
Residuals:
 Min 1Q Median 3Q Max
-64.06167 -15.91338 -0.06167 14.93833 59.13605
Coefficients: Estimate Std. Error t value Pr(>|t|)
factor(rs174548)0 181.062 1.455 124.41 <2e-16 ***
factor(rs174548)1 187.864 1.809 103.88 <2e-16 ***
factor(rs174548)2 186.500 4.300 43.37 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.9861, Adjusted R-squared: 0.986
F-statistic: 9383 on 3 and 397 DF, p-value: < 2.2e-16

> anova(fit1.2)
Analysis of Variance Table
Response: chol
 Df Sum Sq Mean Sq F value Pr(>F)
factor(rs174548) 3 13534205 4511402 9383.2 < 2.2e-16 ***
Residuals 397 190875 481

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```
ANOVA: One-Way Model

How about this one? How is rs174548 being treated now?

Compare model fit results from (fit1.1 & fit2).
ANOVA: One-Way Model

Model: \(E[Y|x] = \beta_0 + \beta_1 x\)
where \(Y\): cholesterol, \(x\): rs174548

Interpretation of model parameters?
- \(\beta_0\): mean cholesterol in the C/C group [estimate: 181.575 mg/dl]
- \(\beta_1\): mean cholesterol difference between C/G and C/C – or – between G/G and C/G groups [estimate: 4.703 mg/dl]

This model presumes differences between “consecutive” groups are the same (in this example, linear dose effect of allele) – more restrictive than the ANOVA model!

Back to the ANOVA model...
ANOVA: One-Way Model

- We rejected the null hypothesis that the mean cholesterol levels are the same across groups defined by rs174548 ($p=0.01184$).

- What are the groups with differences in means?

MULTIPLE COMPARISONS (coming up)
One-Way ANOVA allowing for unequal variances

We can also perform one-way ANOVA allowing for unequal variances:

```r
> oneway.test(chol ~ factor(rs174548))

One-way analysis of means (not assuming equal variances)

data: chol and factor(rs174548)
F = 4.3258, num df = 2.000, denom df = 73.284, p-value = 0.01676
```

- We reject the null hypothesis that the mean cholesterol levels are the same across groups defined by rs174548 (p=0.01676).
  - What are the groups with differences in means?

MULTIPLE COMPARISONS (coming up)
One-Way ANOVA with robust standard errors

```r
> summary(gee(chol ~ factor(rs174548), id=seq(1,length(chol))))
Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
running glm to get initial regression estimate
(Intercept) factor(rs174548)1 factor(rs174548)2
 181.061674 6.802272 5.438326

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
 Link: Identity
 Variance to Mean Relation: Gaussian
 Correlation Structure: Independent

Call:
 gee(formula = chol ~ factor(rs174548), id = seq(1, length(chol)))

Summary of Residuals:
 Min 1Q Median 3Q Max
-64.06167401 -15.91337769 -0.06167401 14.93832599 59.13605442

Coefficients:
 Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) 181.0617 1.455346 124.411431 1.400016 129.328297
factor(rs174548)1 6.802272 2.321365 2.930290 2.402005 2.831914
factor(rs174548)2 5.438326 4.539833 1.197913 3.624271 1.500530

Estimated Scale Parameter: 480.7932
Number of Iterations: 1
```
Kruskal-Wallis Test

- Non-parametric analogue to the one-way ANOVA
  - Based on ranks

- In our example:

```r
> kruskal.test(chol ~ factor(rs174548))

Kruskal-Wallis rank sum test

data: chol by factor(rs174548)
Kruskal-Wallis chi-squared = 7.4719, df = 2, p-value = 0.02385
```

- Conclusion:
  - Evidence that the cholesterol distribution is not the same across all groups.
  - With the global null rejected, you can also perform pairwise comparisons [Wilcoxon rank sum], but adjust for multiplicities!
REGRESSION METHODS

MULTIPLE COMPARISONS
ANOVA: One-Way Model

- What are the groups with differences in means?

MULTIPLE COMPARISONS:

\[
\begin{align*}
\mu_0 &= \mu_1? \\
\mu_0 &= \mu_2? \\
\mu_1 &= \mu_2? \\
\frac{\mu_1 + \mu_2}{2} &= \mu_0? \\
\end{align*}
\]

Pairwise comparisons

Non-pairwise comparison
Multiple Comparisons: Family-wise error rates

- Illustrating the multiple comparison problem
  - Truth: null hypotheses
  - Tests: pairwise comparisons - each at the 5% level.

What is the probability of rejecting at least one?

<table>
<thead>
<tr>
<th>#groups $= K$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$#pairwise$</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>21</td>
<td>28</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>comparisons $C = K(K-1)/2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(\text{at least one sig}) = 1-(1-0.05)^C$</td>
<td>0.05</td>
<td>0.143</td>
<td>0.265</td>
<td>0.401</td>
<td>0.537</td>
<td>0.659</td>
<td>0.762</td>
<td>0.842</td>
<td>0.901</td>
</tr>
</tbody>
</table>

That is, if you have three groups and make pairwise comparisons, each at the 5% level, your family-wise error rate (probability of making at least one false rejection) is over 14%!

Need to address this issue!
Several methods!!!
Multiple Comparisons

- Several methods:
  - None (no adjustment)
  - Bonferroni
  - Holm
  - Hochberg
  - Hommel
  - BH
  - BY
  - FDR
  - ...

Available in R
Multiple Comparisons

- **Bonferroni** adjustment: for C tests performed, use level $\alpha/C$ (or multiply p-values by C).

  - Simple
  - Conservative
  - Must decide on number of tests beforehand
  - Widely applicable
  - Can be done without software!
Multiple Comparisons

- **FDR (False Discovery Rate)**
  - Less conservative procedure for multiple comparisons
  - Among rejected hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses (that is, type I errors).
Multiple Comparisons

```r
call library for multiple comparisons
library(multcomp)

fit model
fit1 = lm(chol ~ -1 + factor(rs174548))

all pairwise comparisons
-- first, define matrix of contrasts
M = contrMat(table(rs174548), type="Tukey")

M

-- second, obtain estimates for multiple comparisons
mc = glht(fit1, linfct = M)
```

Multiple Comparisons of Means: Tukey Contrasts

```
 0 1 2
 1 -0 -1 1 0
 2 0 -1 0 1
 2 -1 0 -1 1
```

This option considers all pairwise comparisons

Stands for general linear hypothesis testing
```r
> ## -- third, adjust the p-values (or not) for multiple comparisons
> summary(mc, test=adjusted("none"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = chol ~ -1 + factor(rs174548))

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| 1 - 0 == 0 | 6.802 | 2.321 | 2.930 | 0.00358 ** |
| 2 - 0 == 0 | 5.438 | 4.540 | 1.198 | 0.23167 |
| 2 - 1 == 0 | -1.364 | 4.665 | -0.292 | 0.77015 |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- none method)
Multiple Comparisons

```r
> summary(mc, test=adjusted("bonferroni"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = chol ~ -1 + factor(rs174548))

Linear Hypotheses:
  Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0  6.802     2.321   2.930  0.0107 *
2 - 0 == 0  5.438     4.540   1.198  0.6950
2 - 1 == 0 -1.364     4.665  -0.292  1.0000
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- bonferroni method)
```
Multiple Comparisons

> summary(mc, test=adjusted("fdr"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = chol ~ -1 + factor(rs174548))

Linear Hypotheses:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---|----------|------------|---------|----------|
| 1 - 0 == 0 | 6.802 | 2.321 | 2.930 | 0.0107 * |
| 2 - 0 == 0 | 5.438 | 4.540 | 1.198 | 0.3475 |
| 2 - 1 == 0 | -1.364 | 4.665 | -0.292 | 0.7702 |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- fdr method)
Multiple Comparisons

- What about using other adjustment methods?
 - For example, we used:
    ```r
    > summary(mc, test=adjusted("bonferroni"))
    ```
 (all pairwise comparisons, with Bonferroni adjustment)
    ```r
    > summary(mc, test=adjusted("fdr"))
    ```
 (all pairwise comparisons, with FDR adjustment)

- Other options are:
  ```r
  summary(mc, test=adjusted("holm"))
  summary(mc, test=adjusted("hochberg"))
  summary(mc, test=adjusted("hommel"))
  summary(mc, test=adjusted("BH"))
  summary(mc, test=adjusted("BY"))
  ```

Results, in this particular example, are basically the same, but they don’t need to be! Different criteria could lead to different results!
GOAL: Comparison of Means across K groups

Multiple Regression: Model: $E[Y|\text{groups}] = \beta_0 + \beta_{\text{group } 2} + ... + \beta_{\text{group } k}$

- $H_0: \beta_1 = \beta_2 = ... = \beta_{k-1} = 0$
- H_1: not all β_i are equal to zero

One-way ANOVA: $H_0: \mu_0 = \mu_1 = ... = \mu_{K-1}$
- H_1: not all means are equal

Rejected H_0?
- YES

Multiple Comparisons (control α overall)
- e.g. Bonferroni: $\alpha/#\text{comparisons}$
REGRESSION METHODS

Two-way ANOVA models
ANOVA: Two-Way Model

Motivation:

Scientific question:
- Assess the effect of rs174548 and sex on cholesterol levels.
ANOVA: Two-Way Model

- Factors: A and B
- Goals:
 - Test for main effect of A
 - Test for main effect of B
 - Test for interaction effect of A and B
To simplify discussion, assume that factor A has three levels, while factor B has two levels.

<table>
<thead>
<tr>
<th>Factor B</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>(\mu_{11})</td>
<td>(\mu_{21})</td>
<td>(\mu_{31})</td>
</tr>
<tr>
<td>B_2</td>
<td>(\mu_{12})</td>
<td>(\mu_{22})</td>
<td>(\mu_{32})</td>
</tr>
</tbody>
</table>
ANOVA: Two-Way Model

Parallel lines = No interaction

Lines are not parallel = Interaction
ANOVA: Two-Way Model

Recall:

- Categorical variables can be represented with "dummy" variables

- Interactions are represented with "cross-products"
ANOVA: Two-Way Model

- Model 1:
 \[E[Y|A_2, A_3, B_2] = \beta_0 + \beta_1 A_2 + \beta_2 A_3 + \beta_3 B_2. \]

- What are the means in each combination-group?

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>(\mu_{11} = \beta_0)</td>
<td>(\mu_{21} = \beta_0 + \beta_1)</td>
<td>(\mu_{31} = \beta_0 + \beta_2)</td>
</tr>
<tr>
<td>B_2</td>
<td>(\mu_{12} = \beta_0 + \beta_3)</td>
<td>(\mu_{22} = \beta_0 + \beta_1 + \beta_3)</td>
<td>(\mu_{32} = \beta_0 + \beta_2 + \beta_3)</td>
</tr>
</tbody>
</table>
ANOVA: Two-Way Model

- **Model 1:**
 \[
 E[Y|A_2, A_3, B_2] = \beta_0 + \beta_1 A_2 + \beta_2 A_3 + \beta_3 B_2.
 \]

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>B₁</td>
<td>(\mu_{11} = \beta_0)</td>
<td>(\mu_{21} = \beta_0 + \beta_1)</td>
<td>(\mu_{31} = \beta_0 + \beta_2)</td>
</tr>
<tr>
<td>B₂</td>
<td>(\mu_{12} = \beta_0 + \beta_3)</td>
<td>(\mu_{22} = \beta_0 + \beta_1 + \beta_3)</td>
<td>(\mu_{32} = \beta_0 + \beta_2 + \beta_3)</td>
</tr>
</tbody>
</table>

Model with no interaction:
- Difference in means between groups defined by factor B does not depend on the level of factor A.
- Difference in means between groups defined by factor A does not depend on the level of factor B.
ANOVA: Two-Way Model

Model 2:
\[E[Y|A_2, A_3, B_2] = \beta_0 + \beta_1 A_2 + \beta_2 A_3 + \beta_3 B_2 + \beta_4 A_2 B_2 + \beta_5 A_3 B_2 \]

What are the means in each combination-group?

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_1)</td>
<td>(\mu_{11} = \beta_0)</td>
<td>(\mu_{21} = \beta_0 + \beta_1)</td>
<td>(\mu_{31} = \beta_0 + \beta_2)</td>
</tr>
<tr>
<td>(B_2)</td>
<td>(\mu_{12} = \beta_0 + \beta_3)</td>
<td>(\mu_{22} = \beta_0 + \beta_1 + \beta_3 + \beta_4)</td>
<td>(\mu_{32} = \beta_0 + \beta_2 + \beta_3 + \beta_5)</td>
</tr>
</tbody>
</table>
ANOVA: Two-Way Model

- Three (possible) tests

 - Interaction of A and B (may want to start here)

 - Rejection would imply that differences between means of A depends on the level of B (and vice-versa) so stop

 - Main effect of A

 - Test only if no interaction

 - Main effect of B

 - Test only if no interaction

[Note: If you have one observation per cell, you cannot test interaction!]
ANOVA: Two-Way Model

- Model without interaction
 \[E[Y|A_2, A_3, B_2] = \beta_0 + \beta_1A_2 + \beta_2A_3 + \beta_3B_2. \]

How do we test for main effect of factor A?
 \[H_0: \beta_1 = \beta_2 = 0 \quad \text{vs.} \quad H_1: \beta_1 \text{ or } \beta_2 \text{ not zero} \]

How do we test for main effect of factor B?
 \[H_0: \beta_3 = 0 \quad \text{vs.} \quad H_1: \beta_3 \text{ not zero} \]
ANOVA: Two-Way Model

- Model with interaction:
 \[E[Y|A_2, A_3, B_2] = \beta_0 + \beta_1 A_2 + \beta_2 A_3 + \beta_3 B_2 + \beta_4 A_2 B_2 + \beta_5 A_3 B_2 \]

 How do we test for interactions?

 \[
 \begin{cases}
 H_0: \beta_4 = \beta_5 = 0 & \text{vs.} \\
 H_1: \beta_4 \text{ or } \beta_5 \text{ not zero}
 \end{cases}
 \]

 IMPORTANT:
 If you reject the null, do not test main effects!!!
ANOVA: Two-Way Model (without interaction)

```r
> fit1 = lm(chol ~ factor(sex) + factor(rs174548))
> summary(fit1)
Call:
lm(formula = chol ~ factor(sex) + factor(rs174548))

Residuals:
     Min      1Q  Median      3Q     Max
-66.6534 -14.4633  -0.6008  15.4450  57.6350

Coefficients:             Estimate Std. Error t value Pr(>|t|)
(Intercept)                175.365      1.786  98.208  < 2e-16 ***
factor(sex)1               11.053      2.126   5.199 3.22e-07 ***
factor(rs174548)1          7.236      2.250   3.215  0.00141 **
factor(rs174548)2          5.184      4.398   1.179  0.23928
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.24 on 396 degrees of freedom
Multiple R-squared: 0.08458,    Adjusted R-squared: 0.07764
F-statistic: 12.2 on 3 and 396 DF,  p-value: 1.196e-07

> anova(fit0,fit1)
Analysis of Variance Table

Model 1: chol ~ factor(sex)
Model 2: chol ~ factor(sex) + factor(rs174548)

           Res.Df RSS Df Sum of Sq     F  Pr(>F)
1        398 183480
2        396 178681  2    4799.1 5.318 0.005259 **
```
ANOVA: Two-Way Model (without interaction)

> fit1 = lm(chol ~ factor(sex) + factor(rs174548))
> summary(fit1)

Call:
 lm(formula = chol ~ factor(sex) + factor(rs174548))

Residuals:
 Min 1Q Median 3Q Max
-66.6534 -14.4633 -0.6008 15.4450 57.6350

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 175.365 1.786 98.208 < 2e-16 ***
factor(sex)1 11.053 2.126 5.199 3.22e-07 ***
factor(rs174548)1 7.236 2.250 3.215 0.00141 **
factor(rs174548)2 5.184 4.398 1.179 0.23928

Residual standard error: 21.24 on 396 degrees of freedom
Multiple R-squared: 0.08458, Adjusted R-squared: 0.07764
F-statistic: 12.2 on 3 and 396 DF, p-value: 1.196e-07

> anova(fit0,fit1)
Analysis of Variance Table

Model 1: chol ~ factor(sex)
Model 2: chol ~ factor(sex) + factor(rs174548)
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 398 183480
2 396 178681 2 4799.1 5.318 0.005259 **

Interpretation of results:
- Estimated mean cholesterol for male C/C group: 175.37 mg/dl
- Estimated difference in mean cholesterol levels between females and males adjusted by genotype: 11.053 mg/dl
- Estimated difference in mean cholesterol levels between C/G and C/C groups adjusted by sex: 7.236 mg/dl
- Estimated difference in mean cholesterol levels between G/G and C/C groups adjusted by sex: 5.184 mg/dl
- There is evidence that cholesterol is associated with sex (p< 0.001).
- There is evidence that cholesterol is associated with genotype (p=0.005)
ANOVA: Two-Way Model (without interaction)

In words:

- Adjusting for sex, the difference in mean cholesterol comparing C/G to C/C is 7.236 and comparing G/G to C/C is 5.184.
 - This difference does not depend on sex
 - (this is because the model does not have an interaction between sex and genotype!)
ANOVA: Two-Way Model (with interaction)

\[
\text{Call:} \quad \text{lm(formula = chol ~ factor(sex) * factor(rs174548))}
\]

\[
\text{Residuals:}
\begin{array}{cccccc}
\text{Min} & \text{1Q} & \text{Median} & \text{3Q} & \text{Max} \\
-70.5286 & -13.6037 & -0.9736 & 14.1709 & 54.8818 \\
\end{array}
\]

\[
\text{Coefficients:}
\begin{array}{cccccc}
\text{Estimate} & \text{Std. Error} & \text{t value} & \text{Pr(>|t|)} \\
\hline
\text{(Intercept)} & 178.1182 & 2.0089 & 88.666 & < 2e-16 *** \\
\text{factor(sex)1} & 5.7109 & 2.7982 & 2.041 & 0.04192 * \\
\text{factor(rs174548)1} & 0.9597 & 3.1306 & 0.307 & 0.75933 \\
\text{factor(rs174548)2} & -0.2015 & 6.4053 & -0.031 & 0.97492 \\
\text{factor(sex)1:factor(rs174548)1} & 12.7398 & 4.4650 & 2.853 & 0.00456 ** \\
\text{factor(sex)1:factor(rs174548)2} & 10.2296 & 8.7482 & 1.169 & 0.24297 \\
\end{array}
\]

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.07 on 394 degrees of freedom
Multiple R-squared: 0.1039, Adjusted R-squared: 0.09257
F-statistic: 9.14 on 5 and 394 DF, p-value: 3.062e-08
> anova(fit1, fit2)
Analysis of Variance Table

Model 1: chol ~ factor(sex) + factor(rs174548)
Model 2: chol ~ factor(sex) * factor(rs174548)

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>396</td>
<td>1</td>
<td>178681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>394</td>
<td>2</td>
<td>174902</td>
<td>3779</td>
<td>4.2564</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
ANOVA: Two-Way Model (with interaction)

```r
> fit2 = lm(chol ~ factor(sex) * factor(rs174548))
> summary(fit2)

Call:
lm(formula = chol ~ factor(sex) * factor(rs174548))

Residuals:
   Min     1Q   Median     3Q    Max
-70.5286 -13.6037  -0.9736  14.1709  54.8818

Coefficients:                                  Estimate Std. Error t value Pr(>|t|)
(Intercept)                             178.1182     2.0089  88.666  < 2e-16 ***
factor(sex)1                           5.7109     2.7982   2.041  0.04192 *
factor(rs174548)1                       0.9597     3.1306   0.307  0.75933
factor(rs174548)2                     -0.2015     6.4053  -0.031  0.97492
factor(sex)1:factor(rs174548)1         12.7398     4.4650   2.853  0.00456 **
factor(sex)1:factor(rs174548)2        10.2296     8.7482   1.169  0.24297
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.07 on 394 degrees of freedom
Multiple R-squared: 0.1039,    Adjusted R-squared: 0.09257
F-statistic:  9.14 on 5 and 394 DF,  p-value: 3.062e-08
```

Interpretation of results:
- Estimated mean cholesterol for male C/C group: 178.12 mg/dl
- Estimated mean cholesterol for female C/C group: (178.12 + 5.7109) mg/dl
- Estimated mean cholesterol for male C/G group: (178.12 + 0.9597) mg/dl
- Estimated mean cholesterol for female C/G group: (178.12 + 5.7109 + 0.9597 + 12.7398) mg/dl
- There is evidence for an interaction between sex and genotype (p = 0.015)
Two-Way ANOVA

Significant Interaction?

Interpret the effect of factor A on mean response for each level of factor B (or effect of factor B on mean response for each level of factor A)

YES

NO

Interpret main effects of factor A and factor B
REGRESSION METHODS

ANCOVA (aka ANACOVA)
ANalysis of COVariance Models (ANCOVA)

Motivation:

- Scientific question:
 - Assess the effect of rs174548 on cholesterol levels adjusting for age
ANalysis of COVARiance Models (ANCOVA)

- ANOVA with one or more continuous variables
 - Equivalent to regression with “dummy” variables and continuous variables

- Primary comparison of interest is across k groups defined by a categorical variable, but the k groups may differ on some other potential predictor or confounder variables [also called covariates].
To facilitate discussion assume

- **Y**: continuous response (e.g. cholesterol)
- **X**: continuous variable (e.g. age)
- **Z**: dummy variable (e.g. indicator of C/G or G/G versus C/C)

Model:

\[Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 XZ + \varepsilon \]

Note that:

\[Z = 0 \Rightarrow E[Y \mid X, Z = 0] = \beta_0 + \beta_1 X \]
\[Z = 1 \Rightarrow E[Y \mid X, Z = 1] = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X \]

This model allows for different intercepts/slopes for each group.
ANCOVA

- Testing coincident lines: $H_0 : \beta_2 = 0, \beta_3 = 0$
 - Compares overall model with reduced model
 $$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Testing parallelism: $H_0 : \beta_3 = 0$
 - Compares overall model with reduced model
 $$Y = \beta_0 + \beta_1 X + \beta_2 Z + \varepsilon$$
\[
\text{fit0} = \text{lm(chol} \sim \text{factor(rs174548))}
\]
\[
\text{summary(fit0)}
\]
Call:
\[
\text{lm(formula} = \text{chol} \sim \text{factor(rs174548))}
\]

Residuals:
\[
\begin{array}{cccccc}
\text{Min} & \text{1Q} & \text{Median} & \text{3Q} & \text{Max} \\
-64.06167 & -15.91338 & -0.06167 & 14.93833 & 59.13605 \\
\end{array}
\]

Coefficients:
\[
\begin{array}{cccccc}
\text{Estimate} & \text{Std. Error} & \text{t value} & \text{Pr(>|t|)} \\
(\text{Intercept}) & 181.062 & 1.455 & 124.411 & < 2e-16 *** \\
\text{factor(rs174548)1} & 6.802 & 2.321 & 2.930 & 0.00358 ** \\
\text{factor(rs174548)2} & 5.438 & 4.540 & 1.198 & 0.23167 \\
\end{array}
\]

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.93 on 397 degrees of freedom
Multiple R-squared: 0.0221, Adjusted R-squared: 0.01718
F-statistic: 4.487 on 2 and 397 DF, p-value: 0.01184

\[
\text{anova(fit0)}
\]
Analysis of Variance Table
Response: chol
\[
\begin{array}{cccccc}
\text{Df} & \text{Sum Sq} & \text{Mean Sq} & \text{F value} & \text{Pr(>F)} \\
\text{factor(rs174548)} & 2 & 4314 & 2157 & 4.4865 & 0.01184 * \\
\text{Residuals} & 397 & 190875 & 481 & \\
\end{array}
\]

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
ANCOVA

> fit1 = lm(chol ~ factor(rs174548) + age)
> summary(fit1)
Call:
 lm(formula = chol ~ factor(rs174548) + age)

Residuals:
 Min 1Q Median 3Q Max
-57.2089 -14.4293 0.4443 14.2652 55.8985

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 163.28125 4.36422 37.414 < 2e-16 ***
factor(rs174548)1 7.30137 2.27457 3.210 0.00144 **
factor(rs174548)2 5.08431 4.44331 1.144 0.25321
age 0.32140 0.07457 4.310 2.06e-05 ***

Residual standard error: 21.46 on 396 degrees of freedom
Multiple R-squared: 0.06592, Adjusted R-squared: 0.05884
F-statistic: 9.316 on 3 and 396 DF, p-value: 5.778e-06

> anova(fit0,fit1)
Analysis of Variance Table

Model 1: chol ~ factor(rs174548)
Model 2: chol ~ factor(rs174548) + age
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 397 190875
2 396 182322 1 8552.9 18.577 2.062e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
ANCOVA

![Graph showing total cholesterol (mg/dl) vs age (years) with three genotypes: C/C, C/G, and G/G. The graph is labeled with Total cholesterol (mg/dl) on the y-axis and Age (years) on the x-axis. Different lines represent each genotype, with C/C in black, C/G in red, and G/G in blue. The data points are scattered across the graph, indicating a trend.](image-url)
> fit2 = lm(chol ~ factor(rs174548) * age)
> summary(fit2)

Call:
 lm(formula = chol ~ factor(rs174548) * age)

Residuals:
 Min 1Q Median 3Q Max
-57.5425 -14.3002 0.7131 14.2138 55.7089

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 164.14677 5.79545 28.323 < 2e-16 ***
factor(rs174548)1 3.42799 8.79946 0.390 0.69707
factor(rs174548)2 16.53004 18.28067 0.904 0.36642
age 0.30576 0.10154 3.011 0.00277 **
factor(rs174548)1:age -0.07159 0.15615 -0.458 0.64692
factor(rs174548)2:age -0.20255 0.31488 -0.643 0.52043

Residual standard error: 21.49 on 394 degrees of freedom
Multiple R-squared: 0.06777, Adjusted R-squared: 0.05594
F-statistic: 5.729 on 5 and 394 DF, p-value: 4.065e-05
ANCOVA

```r
> fit0 = lm(chol ~ age)
> summary(fit0)

Call:
  lm(formula = chol ~ age)

Residuals:
     Min      1Q  Median      3Q     Max
-60.453 -14.643  -0.022  14.659  58.995

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 166.90168    4.26488  39.134  < 2e-16 ***
age           0.31033    0.07524   4.125 4.52e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.69 on 398 degrees of freedom
Multiple R-squared:  0.04099,   Adjusted R-squared:  0.03858
F-statistic: 17.01 on 1 and 398 DF,  p-value: 4.522e-05
```

```r
> anova(fit0, fit2)

Analysis of Variance Table

Model 1: chol ~ age
Model 2: chol ~ factor(rs174548) * age

  Res.Df RSS Df Sum of Sq    F Pr(>F)
1    398 187187
2    394 181961   4  5226.6 2.8293 0.02455 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```
> anova(fit1, fit2)
Analysis of Variance Table

Model 1: chol ~ factor(rs174548) + age
Model 2: chol ~ factor(rs174548) * age
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 396 182322
2 394 181961 2 361.11 0.391 0.6767

Test of parallel lines
Total cholesterol (mg/dl)

Age (years)

C/C
C/G
G/G

ANCOVA
ANCOVA

In summary:

- If the slopes are not equal, then age is an effect modifier

\[E[Y \mid x, z] = \beta_0 + \beta_1 x + \beta_2 (CG) + \beta_3 (GG) + \beta_4 (x \times CG) + \beta_5 (x \times GG) \]

- If the slopes are the same,

\[E[Y \mid x, z] = \beta_0 + \beta_1 x + \beta_2 (CG) + \beta_3 (GG) \]
If the slopes are the same,

\[E[Y \mid x, z] = \beta_0 + \beta_1 x + \beta_2 (CG) + \beta_3 (GG) \]

then one can obtain adjusted means for the three genotypes using the mean age over all groups.

For example, the adjusted means for the three groups would be

\[\overline{Y}_1 \text{(adj)} = \hat{\beta}_0 + \bar{x} \hat{\beta}_1 \]
\[\overline{Y}_2 \text{(adj)} = (\hat{\beta}_0 + \hat{\beta}_2) + \bar{x} \hat{\beta}_1 \]
\[\overline{Y}_3 \text{(adj)} = (\hat{\beta}_0 + \hat{\beta}_3) + \bar{x} \hat{\beta}_1 \]
mean cholesterol for different genotypes adjusted by age
```r
> predict(fit1, new=data.frame(age=mean(age),rs174548=0))
  1
180.9013
> predict(fit1, new=data.frame(age=mean(age),rs174548=1))
  1
188.2026
> predict(fit1, new=data.frame(age=mean(age),rs174548=2))
  1
185.9856
```
ANCOVA

- **Significant Interaction?** (slopes are different?)
 - **YES**
 - Interpret the difference in means of the response for given values of the continuous variable
 - **NO**
 - **Control for potential confounder?**
 - **YES**
 - Compute adjusted means at the common X mean
 - **NO**
Summary

We have considered:

- ANOVA and ANCOVA
 - Interpretation
 - Estimation
 - Interaction
- Multiple comparisons