Module 6
Case Studies in Longitudinal Data Analysis

Benjamin French, PhD
Radiation Effects Research Foundation

SISCR 2018
July 24, 2018
Learning objectives

• This module will focus on the design of longitudinal studies, exploratory data analysis, and application of regression techniques based on estimating equations and mixed-effects models

• Case studies will be used to discuss analysis strategies, the application of appropriate analysis methods, and the interpretation of results, with examples in R and Stata

• Some theoretical background and details will be provided; our goal is to translate statistical theory into practical application

• At the conclusion of this module, you should be able to apply appropriate exploratory and regression techniques to summarize and generate inference from longitudinal data

★ Please interrupt; questions are helpful, and welcome
Overview

Review: Longitudinal data analysis

Case study: Longitudinal depression scores

Case study: Indonesian Children’s Health Study

Case study: Carpal tunnel syndrome

Summary and resources
Overview

Review: Longitudinal data analysis

Case study: Longitudinal depression scores

Case study: Indonesian Children’s Health Study

Case study: Carpal tunnel syndrome

Summary and resources
Longitudinal studies

Repeatedly collect information on the same individuals over time

Benefits

- Record incident events
- Ascertain exposure prospectively
- Separate time effects: cohort, period, age
- Distinguish changes over time within individuals
- Offer attractive efficiency gains over cross-sectional studies
- Help establish causal effect of exposure on outcome
Longitudinal studies

Repeatedly collect information on the same individuals over time

Challenges

- Determine causality when covariates vary over time
- Choose exposure lag when covariates vary over time
- Account for incomplete participant follow-up
- Use specialized methods that account for longitudinal correlation
Motivating example

Georgian infant birth weight

- Birth weight measured for each of $m = 5$ children of $n = 200$ mothers
- Birth weight for infants j comprise repeated measures on mothers i
- Interested in the association between birth order and birth weight
 - Estimate the average time course among all mothers
 - Estimate the time course for individual mothers
 - Quantify the degree of heterogeneity across mothers
- Consider adjustment for mother’s initial age (at first birth)
Motivating example

<table>
<thead>
<tr>
<th>momid</th>
<th>birthord</th>
<th>bweight</th>
<th>lowbrth</th>
<th>initage</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>39</td>
<td>1</td>
<td>3720</td>
<td>0</td>
</tr>
<tr>
<td>[2]</td>
<td>39</td>
<td>2</td>
<td>3260</td>
<td>0</td>
</tr>
<tr>
<td>[3]</td>
<td>39</td>
<td>3</td>
<td>3910</td>
<td>0</td>
</tr>
<tr>
<td>[4]</td>
<td>39</td>
<td>4</td>
<td>3320</td>
<td>0</td>
</tr>
<tr>
<td>[5]</td>
<td>39</td>
<td>5</td>
<td>2480</td>
<td>1</td>
</tr>
<tr>
<td>[6]</td>
<td>62</td>
<td>1</td>
<td>2381</td>
<td>1</td>
</tr>
<tr>
<td>[7]</td>
<td>62</td>
<td>2</td>
<td>2835</td>
<td>1</td>
</tr>
<tr>
<td>[8]</td>
<td>62</td>
<td>3</td>
<td>2381</td>
<td>1</td>
</tr>
<tr>
<td>[9]</td>
<td>62</td>
<td>4</td>
<td>2268</td>
<td>1</td>
</tr>
<tr>
<td>[10]</td>
<td>62</td>
<td>5</td>
<td>2211</td>
<td>1</td>
</tr>
</tbody>
</table>
Motivating example
Strategies for analysis of longitudinal data

- **Derived variable**: Collapse the longitudinal series for each subject into a summary statistic, such as a difference (a.k.a. ‘change score’) or regression coefficient, and use methods for independent data.

- **Repeated measures**: Include all data in a regression model for the mean response and account for longitudinal and/or cluster correlation.
Options for analysis of change

Does mean change differ across groups?

• Consider simple situation with
 ▶ Baseline measurement (pre; $t = 0$)
 ▶ Single follow-up measurement (post; $t = 1$)

• Analysis options for simple pre-post design
 ▶ POST: Analysis of post only
 ▶ CHANGE: Analysis of post − pre
 ▶ ANCOVA: Analysis of post controlling for pre
Change and randomized studies

• **Key assumption**: groups equivalent at baseline

• Methods that ‘adjust’ for baseline are generally preferable due to greater precision

 ▶ $\rho > 1/2$ \(\text{POST} \prec \text{CHANGE} \prec \text{ANCOVA} \)

 ▶ $\rho < 1/2$ \(\text{CHANGE} \prec \text{POST} \prec \text{ANCOVA} \)

 ▶ CHANGE analysis adjusts for baseline by subtracting it from follow-up
 ▶ ANCOVA analysis adjusts for baseline by controlling for it in a model

• Missing data will impact each approach
Change and non-randomized studies

- Baseline equivalence no longer guaranteed
- Methods no longer answer same scientific question
 - POST: How different are groups at follow-up?
 - CHANGE: How different is the change in outcome for the two groups?
 - ANCOVA: What is the expected difference in the mean outcome at follow-up across the two groups, controlling for the baseline value of the outcome?
- CHANGE typically most relevant; multivariable methods to come later characterize CHANGE across multiple timepoints
Strategies for analysis of longitudinal data

- **Derived variable**: Collapse the longitudinal series for each subject into a summary statistic, such as a difference (a.k.a. ‘change score’) or regression coefficient, and use methods for independent data
 - **Example**: birth weight of 5th child – birth weight of 1st child
 - Might be adequate for two time points and no missing data

- **Repeated measures**: Include all data in a regression model for the mean response and account for longitudinal and/or cluster correlation
 - **Generalized estimating equations** (GEE)
 - **Generalized linear mixed-effects models** (GLMM)
Notation

Define

\[m_i = \text{number of observations for subject } i = 1, \ldots, n \]
\[Y_{ij} = \text{outcome for subject } i \text{ at time } j = 1, \ldots, m_i \]
\[X_i = (x_{i1}, x_{i2}, \ldots, x_{im_i}) \]
\[x_{ij} = (x_{ij1}, x_{ij2}, \ldots, x_{ijp}) \]

exposure, covariates

Stacks of data for each subject:

\[Y_i = \begin{bmatrix} Y_{i1} \\ Y_{i2} \\ \vdots \\ Y_{imi} \end{bmatrix} \quad X_i = \begin{bmatrix} x_{i11} & x_{i12} & \cdots & x_{i1p} \\ x_{i21} & x_{i22} & \cdots & x_{i2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{imi1} & x_{imi2} & \cdots & x_{imi_p} \end{bmatrix} \]
Dependence and correlation

Issue Response variables measured on the same subject are correlated

- Observations are **dependent** or **correlated** when one variable predicts the value of another variable
 - The birth weight for a first child is predictive of the birth weight for a second child born to the same mother

- **Variance**: measures average distance that an observation falls away from the mean

- **Covariance**: measures whether, on average, departures in one variable $Y_{ij} - \mu_j$ ‘go together with’ departures in another variable $Y_{ik} - \mu_k$

- **Correlation**: measure of dependence that takes values from -1 to $+1$
Covariance: Something new to model

\[
\text{Cov}(Y_i) = \begin{bmatrix}
\text{Var}(Y_{i1}) & \text{Cov}(Y_{i1}, Y_{i2}) & \ldots & \text{Cov}(Y_{i1}, Y_{im_i}) \\
\text{Cov}(Y_{i2}, Y_{i1}) & \text{Var}(Y_{i2}) & \ldots & \text{Cov}(Y_{i2}, Y_{im_i}) \\
\vdots & \vdots & \ddots & \vdots \\
\text{Cov}(Y_{im_i}, Y_{i1}) & \text{Cov}(Y_{im_i}, Y_{i2}) & \ldots & \text{Var}(Y_{im_i})
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\sigma_1^2 & \sigma_1 \sigma_2 \rho_{12} & \ldots & \sigma_1 \sigma_{m_i} \rho_{1m_i} \\
\sigma_2 \sigma_1 \rho_{21} & \sigma_2^2 & \ldots & \sigma_2 \sigma_{m_i} \rho_{2m_i} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{m_i} \sigma_1 \rho_{m_i1} & \sigma_{m_i} \sigma_2 \rho_{m_i2} & \ldots & \sigma_{m_i}^2
\end{bmatrix}
\]

Note: \(\rho = \text{correlation} \)
Contrast average outcome values across populations of individuals defined by covariate values, while accounting for correlation.

- Focus on a generalized linear model with regression parameters β, which characterize the systemic variation in Y across covariates X

$$
\begin{align*}
Y_i & = (Y_{i1}, Y_{i2}, \ldots, Y_{im_i})^T \\
X_i & = (x_{i1}, x_{i2}, \ldots, x_{im_i})^T \\
x_{ij} & = (x_{ij1}, x_{ij2}, \ldots, x_{ijp}) \\
\beta & = (\beta_1, \beta_2, \ldots, \beta_p)^T
\end{align*}
$$

for $i = 1, \ldots, n$; $j = 1, \ldots, m_i$; and $k = 1, \ldots, p$

- Longitudinal correlation structure is a nuisance feature of the data.
Mean model

Assumptions

- Observations are independent across subjects
- Observations could be correlated within subjects

Mean model: Primary focus of the analysis

\[
E[Y_{ij} | x_{ij}] = \mu_{ij}(\beta) \\
g(\mu_{ij}) = x_{ij}\beta
\]

- Corresponds to any generalized linear model with link \(g(\cdot) \)

<table>
<thead>
<tr>
<th>Continuous outcome</th>
<th>Count outcome</th>
<th>Binary outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E[Y_{ij}</td>
<td>x_{ij}] = \mu_{ij})</td>
<td>(E[Y_{ij}</td>
</tr>
<tr>
<td>(\mu_{ij} = x_{ij}\beta)</td>
<td>(\log(\mu_{ij}) = x_{ij}\beta)</td>
<td>(\text{logit}(\mu_{ij}) = x_{ij}\beta)</td>
</tr>
</tbody>
</table>

- Characterizes a **marginal** mean regression model
Covariance model

Longitudinal correlation is a nuisance; secondary to mean model of interest

1. Assume a form for variance that could depend on μ_{ij}

 Continuous outcome: $\text{Var}[Y_{ij} | x_{ij}] = \sigma^2$

 Count outcome: $\text{Var}[Y_{ij} | x_{ij}] = \mu_{ij}$

 Binary outcome: $\text{Var}[Y_{ij} | x_{ij}] = \mu_{ij}(1 - \mu_{ij})$

 which could also include a scale or dispersion parameter $\phi > 0$

2. Select a model for longitudinal correlation with parameters α

 Independence: $\text{Corr}[Y_{ij}, Y_{ij'} | X_i] = 0$

 Exchangeable: $\text{Corr}[Y_{ij}, Y_{ij'} | X_i] = \alpha$

 Auto-regressive: $\text{Corr}[Y_{ij}, Y_{ij'} | X_i] = \alpha^{|j-j'|}$

 Unstructured: $\text{Corr}[Y_{ij}, Y_{ij'} | X_i] = \alpha_{jj'}$
Estimating equations

\[0 = \sum_{i=1}^{n} D_i^T V_i^{-1} (Y_i - \hat{\mu}_i) \]

1. The model for the mean, \(\mu_i(\beta) \), is compared to the observed data, \(Y_i \); setting the equations to equal 0 tries to minimize the difference between observed and expected.

2. Estimation uses the inverse of the variance (covariance) to weight the data from subject \(i \); more weight is given to differences between observed and expected for subjects who contribute more information.

3. Simply a ‘change of scale’ from the scale of the mean, \(\mu_i \), to the scale of the regression coefficients (covariates).
Comments

• GEE is specified by a mean model and a correlation model
 1. A regression model for the average outcome, e.g., linear, logistic
 2. A model for longitudinal correlation, e.g., independence, exchangeable

• $\hat{\beta}$ is a consistent estimator for β provided that the mean model
 is correctly specified, even if the model for longitudinal correlation
 is incorrectly specified, i.e., $\hat{\beta}$ is ‘robust’ to correlation model
 mis-specification

• Standard errors for $\hat{\beta}$ must capture the correlation in the data,
 either by choosing the correct correlation model, or via an alternative
 variance estimator

• GEE computes a sandwich variance estimator (aka empirical, robust,
 or Huber-White variance estimator)

• Empirical variance estimator provides valid standard errors for $\hat{\beta}$
 even if the working correlation model is incorrect, but requires $n \geq 40$
 (Mancl and DeRouen, 2001)
Variance estimators

- **Independence estimating equation**: An estimation equation with a working independence correlation structure
 - Model-based standard errors are generally not valid
 - Empirical standard errors are valid given large n and $n \gg m$

- **Weighted estimation equation**: An estimation equation with a non-independence working correlation structure
 - Model-based standard errors are valid if correlation model is correct
 - Empirical standard errors are valid given large n and $n \gg m$

<table>
<thead>
<tr>
<th>Estimating equation</th>
<th>Variance estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independence</td>
<td>Model-based: −</td>
</tr>
<tr>
<td>Weighted</td>
<td>Model-based: −/+</td>
</tr>
</tbody>
</table>
GEE commands

- **Stata**: `xtset`, then use `xtgee`
- **R**: `geeglm` in `geepack` library, using `geese` fitter function
- **SAS**: PROC GENMOD

NB: Order might be important for analysis in software
- Requires sorting the data by unique subject identifier and time
- Important for exchangeable and auto-regressive correlation structures
Motivating example

Interested in the association between birth order and birth weight

\[E[Y_{ij} \mid x_{ij}] = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} \]

for \(i = 1, \ldots, 200 \) and \(j = 1, \ldots, 5 \) with

- \(Y_{ij} \): Infant birth weight (continuous)
- \(x_{ij1} \): Infant birth order
- \(x_{ij2} \): Mother’s initial age
Motivating example: Stata commands

* Declare the dataset to be "panel" data, grouped by momid with time variable birthord
 xtset momid birthord

* Fit a linear model with independence correlation
 xtgee bweight birthord initage, corr(ind) robust

* Fit a linear model with exchangeable correlation
 xtgee bweight birthord initage, corr(exc) robust
Motivating example: Stata output

GEE population-averaged model

Number of obs = 1,000
Group variable: momid Number of groups = 200
Link: identity Obs per group:
Family: Gaussian min = 5
Correlation: independent avg = 5.0
max = 5
Wald chi2(2) = 27.95

Scale parameter: 324458.3 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on momid)

| bweight | Coef. | Robust Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|--------|------------------|-------|------|---------------------|
| birthord| 46.608 | 10.02134 | 4.65 | 0.000| 26.96653 66.24947 |
| initage | 26.73226| 10.11111 | 2.64 | 0.008| 6.914877 46.54965 |
| _cons | 2526.622| 177.2781 | 14.25 | 0.000| 2179.164 2874.081 |
Motivating example: Stata output

GEE population-averaged model
Number of obs = 1,000
Group variable: momid Number of groups = 200
Link: identity Obs per group:
Family: Gaussian min = 5
Correlation: exchangeable avg = 5.0
max = 5
Wald chi2(2) = 27.95
Scale parameter: 324458.3 Prob > chi2 = 0.0000
(Std. Err. adjusted for clustering on momid)

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|----------|-----------|------|------|----------------------|
| bweight | | | | | |
| birthord | 46.608 | 10.02134 | 4.65 | 0.000| 26.96653 66.24947 |
| initage | 26.73226 | 10.1111 | 2.64 | 0.008| 6.914877 46.54965 |
| _cons | 2526.622 | 177.2781 | 14.25| 0.000| 2179.164 2874.081 |
Motivating example: Comments

- Difference in mean birth weight between two populations of infants whose birth order differs by one is 46.6 grams, 95% CI: (27.0, 66.2)
- Model-based standard errors are smaller for exchangeable structure, indicating efficiency gain from assuming a correct correlation structure
- In practice, i.e. with real-world data, it’s often difficult to tell what the correct correlation structure is from exploratory analyses
- *A priori* scientific knowledge should ultimately guide the decision
- I tend to use working independence with empirical standard errors unless I have a good reason to do otherwise, e.g. large efficiency gain
- Try not to select the structure that gives you the smallest \(p \)-value

★ See `help xtgee` for detailed syntax, other options, and saved results
GEE summary

- In the GEE approach the primary focus of the analysis is a marginal mean regression model that corresponds to any GLM.
- Longitudinal correlation is secondary to the mean model of interest and is treated as a nuisance feature of the data.
- Requires selection of a ‘working’ correlation model.
- Semi-parametric: Only the mean and correlation models are specified.
- The correlation model does not need to be correctly specified to obtain a consistent estimator for β or valid standard errors for $\hat{\beta}$.
- Efficiency gains are possible if the correlation model is correct.

Issues

- Accommodates only one source of correlation: Longitudinal or cluster.
- GEE requires that any missing data are missing completely at random.
- Issues arise with time-dependent exposures and covariance weighting.
Strategies for analysis of longitudinal data

- **Derived variable**: Collapse the longitudinal series for each subject into a summary statistic, such as a difference (a.k.a. ‘change score’) or regression coefficient, and use methods for independent data
 - **Example**: birth weight of 5th child – birth weight of 1st child
 - Might be adequate for two time points and no missing data

- **Repeated measures**: Include all data in a regression model for the mean response and account for longitudinal and/or cluster correlation
 - **Generalized estimating equations** (GEE): A marginal model for the mean response and a model for longitudinal or cluster correlation
 \[g(\mathbb{E}[Y_{ij} | x_{ij}]) = x_{ij}\beta \quad \text{and} \quad \text{Corr}[Y_{ij}, Y_{ij}'] = \rho(\alpha) \]
 - **Generalized linear mixed-effects models** (GLMM)
Mixed-effects models (Laird and Ware, 1982)

- Contrast outcomes both within and between individuals
 - Assume that each subject has a regression model characterized by subject-specific parameters: a combination of fixed-effects parameters common to all individuals in the population and random-effects parameters unique to each individual subject
 - Although covariates allow for differences across subjects, typically cannot measure all factors that give rise to subject-specific variation
 - Subject-specific random effects induce a correlation structure
Set-up

For subject i the mixed-effects model is characterized by

$$ Y_i = (Y_{i1}, Y_{i2}, \ldots, Y_{im_i})^T $$

$$ \beta^* = (\beta_1^*, \beta_2^*, \ldots, \beta_p^*)^T $$ Fixed effects

$$ x_{ij} = (x_{ij1}, x_{ij2}, \ldots, x_{ijp}) $$

$$ X_i = (x_{i1}, x_{i2}, \ldots, x_{im_i})^T $$ Design matrix for fixed effects

$$ \gamma_i = (\gamma_{1i}, \gamma_{2i}, \ldots, \gamma_{qi})^T $$ Random effects

$$ z_{ij} = (z_{ij1}, z_{ij2}, \ldots, z_{ijq}) $$

$$ Z_i = (z_{i1}, z_{i2}, \ldots, z_{im_i})^T $$ Design matrix for random effects

for $i = 1, \ldots, n$; $j = 1, \ldots, m_i$; and $k = 1, \ldots, p$ with $q \leq p$
Linear mixed-effects model

Consider a linear mixed-effects model for a continuous outcome Y_{ij}

- **Stage 1**: Model for response given random effects

 $$Y_{ij} = x_{ij}\beta + z_{ij}\gamma_i + \epsilon_{ij}$$

 with

 - x_{ij} is a vector of covariates
 - z_{ij} is a subset of x_{ij}
 - β is a vector of fixed-effects parameters
 - γ_i is a vector of random-effects parameters
 - ϵ_{ij} is observation-specific measurement error

- **Stage 2**: Model for random effects

 $$\gamma_i \sim N(0, G)$$
 $$\epsilon_{ij} \sim N(0, \sigma^2)$$

 with γ_i and ϵ_{ij} are assumed to be independent
Choices for random effects

Consider the linear mixed-effects models that include

- **Random intercepts**

\[
Y_{ij} = \beta_0 + \beta_1 t_{ij} + \gamma_{0i} + \epsilon_{ij}
\]
\[
= (\beta_0 + \gamma_{0i}) + \beta_1 t_{ij} + \epsilon_{ij}
\]

- **Random intercepts and slopes**

\[
Y_{ij} = \beta_0 + \beta_1 t_{ij} + \gamma_{0i} + \gamma_{1i} t_{ij} + \epsilon_{ij}
\]
\[
= (\beta_0 + \gamma_{0i}) + (\beta_1 + \gamma_{1i}) t_{ij} + \epsilon_{ij}
\]
Choices for random effects

Fixed intercept, fixed slope

Random intercept, fixed slope

\(Y_{ij} \)

\(t_{ij} \)
Choices for random effects

Fixed intercept, random slope

Random intercept, random slope
Choices for random effects: G

G quantifies random variation in trajectories across subjects

$$G = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix}$$

- $\sqrt{G_{11}}$ is the typical deviation in the **level** of the response
- $\sqrt{G_{22}}$ is the typical deviation in the **change** in the response
- G_{12} is the covariance between subject-specific intercepts and slopes
 - $G_{12} = 0$ indicates subject-specific intercepts and slopes are uncorrelated
 - $G_{12} > 0$ indicates subjects with **high level** have **high rate** of change
 - $G_{12} < 0$ indicates subjects with **high level** have **low rate** of change

($G_{12} = G_{21}$)
Generalized linear mixed-effects models

A GLMM is defined by **random** and **systematic** components

- **Random**: Conditional on γ_i the outcomes $Y_i = (Y_{i1}, \ldots, Y_{imi})^T$ are mutually independent and have an exponential family density

$$f(Y_{ij} \mid \beta^*, \gamma_i, \phi) = \exp \left\{ \frac{Y_{ij} \theta_{ij} - \psi(\theta_{ij})}{\phi} + c(Y_{ij}, \phi) \right\}$$

for $i = 1, \ldots, n$ and $j = 1, \ldots, m_i$ with a scale parameter $\phi > 0$ and $\theta_{ij} \equiv \theta_{ij}(\beta^*, \gamma_i)$
A GLMM is defined by random and systematic components

- **Systematic**: μ^*_{ij} is modeled via a linear predictor containing fixed regression parameters β^* common to all individuals in the population and subject-specific random effects γ_i with a known link function $g(\cdot)$

$$g(\mu^*_{ij}) = x_{ij} \beta^* + z_{ij} \gamma_i \Leftrightarrow \mu^*_{ij} = g^{-1}(x_{ij} \beta^* + z_{ij} \gamma_i)$$

where the random effects γ_i are mutually independent with a common underlying multivariate distribution, typically assumed to be

$$\gamma_i \sim N_q(0, G)$$

so that G quantifies random variation across subjects
Likelihood-based estimation of β

Requires specification of a complete probability distribution for the data

- Likelihood-based methods are designed for fixed effects, so integrate over the assumed distribution for the random effects

$$L_Y(\beta, \sigma, G) = \prod_{i=1}^{n} \int f_{Y_i | \gamma_i}(Y_i | \gamma_i, \beta, \sigma) \times f_{\gamma_i}(\gamma_i | G)d\gamma_i$$

where f_{γ} is typically the density function of a Normal random variable

- For linear models the required integration is straightforward because Y_i and γ_i are both normally distributed (easy to program)

- For non-linear models the integration is difficult and requires either approximation or numerical techniques (hard to program)
Likelihood-based estimation of β

Two likelihood-based approaches to estimation using a GLMM

1. **Conditional likelihood**: Treat the random effects as if they were fixed parameters and **eliminate** them by conditioning on their sufficient statistics; does not require a specified distribution for γ_i
 - `xtreg` and `xtlogit` with `fe` option in Stata

2. **Maximum likelihood**: Treat the random effects as unobserved nuisance variables and **integrate** over their assumed distribution to obtain the marginal likelihood for β; typically assume $\gamma_i \sim N(0, G)$
 - `xtreg` and `xtlogit` with `re` option in Stata
 - `mixed` and `melogit` in Stata
 - `lmer` and `glmer` in R package `lme4`

NB: ‘Restricted’ maximum likelihood (REML) versus ML estimation
‘Fixed effects’ versus ‘random effects’

‘Fixed-effects’ approach provided by conditional likelihood estimation

- Comparisons are made within individuals who act as their own control and differences are averaged across all individuals in the sample
- Could eliminate potentially large sources of bias by controlling for all stable characteristics of the individuals under study (+)
- Variation across subjects is ignored, which could provide standard error estimates that are too big; conservative inference (-)
- Although controlled for by conditioning, cannot estimate coefficients for covariates that have no within-subject variation (-/+)

B French (Module 6)
‘Fixed effects’ versus ‘random effects’

‘Random-effects’ approach provided by maximum likelihood estimation

- Comparisons are based on within- and between-subject contrasts
- Requires a specified distribution for subject-specific effects; correct specification is required for valid likelihood-based inference (−/+)
- Do not control for unmeasured characteristics because random effects are almost always assumed to be uncorrelated with covariates (−)
- Can estimate effects of within- and between-subject covariates (+)
Assumptions

Valid inference from a linear mixed-effects model relies on

- **Mean model**: As with any regression model for an average outcome, need to correctly specify the functional form of $x_{ij} \beta$ (here also $z_{ij} \gamma_i$)
 - Included important covariates in the model
 - Correctly specified any transformations or interactions

- **Covariance model**: Correct covariance model (random-effects specification) is required for correct standard error estimates for $\hat{\beta}$

- **Distributions**: Correct specification for the distribution of $Y | \gamma$ and γ (typically normal) is required for likelihood function to be correct

- n sufficiently large for **asymptotic inference** to be valid

★ These assumptions must be verified to evaluate any fitted model
Motivating example

Interested in the association between birth order and birth weight

\[
E[Y_{ij} \mid x_{ij}, \gamma_i] = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \gamma_0i
\]

or

\[
\beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \gamma_0i + \gamma_1i x_{ij1}
\]

for \(i = 1, \ldots, 200 \) and \(j = 1, \ldots, 5 \) with

- \(Y_{ij} \): Infant birth weight (continuous)
- \(x_{ij1} \): Infant birth order
- \(x_{ij2} \): Mother’s initial age
Motivating example

Observed data

Individual fits

Birth weight (grams)

Birth order
Motivating example: Stata commands

* Declare the dataset to be "panel" data, grouped by momid
 * with time variable birthord
 xtset momid birthord

* Fit a linear model with random intercepts
 xtmixed bweight birthord initage || momid:, reml

* Fit a linear model with random intercepts and slopes
 xtmixed bweight birthord initage || momid: birthord, reml
Motivating example: Stata output

Mixed-effects REML regression
Group variable: momid

Number of obs = 1,000
Number of groups = 200

Obs per group:
 min = 5
 avg = 5.0
 max = 5

Log restricted-likelihood = -7649.3763
Wald chi2(2) = 30.75
Prob > chi2 = 0.0000

--
bweight | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------+--
birthord | 46.608 9.951013 4.68 0.000 27.10437 66.11163
initage | 26.73226 9.002682 2.97 0.003 9.087332 44.37721
 _cons | 2526.622 163.3388 15.47 0.000 2206.484 2846.761
---------+--

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+---
momid: Identity |
 sd(_cons) | 358.1761 23.71804 314.5799 407.8142

-----------------------------+---
 sd(Residual) | 445.0228 11.13253 423.7297 467.3859

LR test vs. linear model: chibar2(01) = 209.20 Prob >= chibar2 = 0.0000
Motivating example: Stata output

Mixed-effects REML regression
Group variable: momid

Number of obs = 1,000
Number of groups = 200

Obs per group:
 min = 5
 avg = 5.0
 max = 5

Log restricted-likelihood = -7647.4511

| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-----------|----|------|----------------------|
| birthord | 46.608 | 10.41108 | 4.48 | 0.000 | 26.20267 67.01333 |
| initage | 27.06415 | 8.899522 | 3.04 | 0.002 | 9.621406 44.50689 |
| _cons | 2520.8 | 161.1501 | 15.64 | 0.000 | 2204.951 2836.648 |

Random-effects Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>momid: Independent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd(birthord)</td>
<td>49.35203</td>
<td>13.57683</td>
<td>28.78313 84.6198</td>
</tr>
<tr>
<td>sd(_cons)</td>
<td>325.7771</td>
<td>29.6487</td>
<td>272.5545 389.3926</td>
</tr>
<tr>
<td>sd(Residual)</td>
<td>438.6625</td>
<td>11.43015</td>
<td>416.8222 461.6471</td>
</tr>
</tbody>
</table>

LR test vs. linear model: chi2(2) = 213.05
Prob > chi2 = 0.0000
Motivating example: Comments

- Difference in mean birth weight between two populations of infants whose birth order differs by one is 46.6 grams, 95% CI: (26.2, 67.0)
- Agrees well with GEE point estimate and confidence interval
- $\sqrt{\hat{G}_{11}} = 326$ indicates substantial variability across mothers in the initial level of infant birth weight; $\sqrt{\hat{G}_{22}} = 49$ indicates substantial variability across mothers in the trend of birth weight over time
- **Note**: Typically can specify correlated intercepts and slopes, i.e. $G_{12} \neq 0$, but in this case the model would not converge
- There are options for formal statistical evaluation of two random-effects specifications, but I generally do not recommend an inferential procedure in which a p-value tells you to use a simpler model
- Specification for the random effects should be guided by *a priori* scientific knowledge and exploratory data analysis
GLMM summary

- A GLMM is defined by a random component describing outcomes given subject-specific effects and a systematic component describing the conditional mean given subject-specific effects.
- Conditional likelihood for ‘fixed effects’ eliminates subject-specific effects by conditioning on their sufficient statistics.
- Maximum likelihood for ‘random effects’ integrates over the assumed distribution of the subject-specific effects.
- Interpretation of parameter estimates depends on the assumed distribution for the outcome given the subject-specific effects and the specified structure for subject-specific effects.

Issues

- GLMM requires that any missing data are missing at random.
- Issues arise with time-dependent exposures and covariance weighting.
Strategies for analysis of longitudinal data

- **Derived variable**: Collapse the longitudinal series for each subject into a summary statistic, such as a difference (a.k.a. ‘change score’) or regression coefficient, and use methods for independent data

 - **Example**: birth weight of 5th child − birth weight of 1st child
 - Might be adequate for two time points and no missing data

- **Repeated measures**: Include all data in a regression model for the mean response and account for longitudinal and/or cluster correlation

 - **Generalized estimating equations** (GEE): A marginal model for the mean response and a model for longitudinal or cluster correlation

 \[
g(E[Y_{ij} | x_{ij}]) = x_{ij} \beta \quad \text{and} \quad \text{Corr}[Y_{ij}, Y_{ij'}] = \rho(\alpha)
\]

 - **Generalized linear mixed-effects models** (GLMM): A conditional model for the mean response given subject-specific random effects, which induce a (possibly hierarchical) correlation structure

 \[
g(E[Y_{ij} | x_{ij}, \gamma_i]) = x_{ij} \beta^* + z_{ij} \gamma_i
\]
Overview

Review: Longitudinal data analysis

Case study: Longitudinal depression scores

Case study: Indonesian Children’s Health Study

Case study: Carpal tunnel syndrome

Summary and resources
Motivation and design

- Gregoire et al. (1996) published the results of an efficacy study on estrogen patches in treating postnatal depression.
- 61 women with major depression, which began within 3 months of childbirth and persisted for up to 18 months postnatally, participated in a double-blind, placebo-controlled study.
- Women were randomly assigned to active treatment ($n = 34$) or placebo ($n = 27$).
- Participants attended clinics monthly and at each visit self-ratings of depressive symptoms on the Edinburgh postnatal depression scale (EPDS) were measured.
- EPDS is a standardized, validated, self-rating scale consisting of 10 items, each rated on a 4-point scale of 0–3.
- **Goal**: Investigate the antidepressant efficacy of treatment with estrogen over time.
Data

- Depression scores are assessed across $m = 7$ months for the $n = 61$ subjects in the study.
- Depression scores for visit j are the longitudinal components measured on subject i.

<table>
<thead>
<tr>
<th>subj</th>
<th>group</th>
<th>dep0</th>
<th>dep1</th>
<th>dep2</th>
<th>dep3</th>
<th>dep4</th>
<th>dep5</th>
<th>dep6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>18</td>
<td>17</td>
<td>18</td>
<td>15</td>
<td>17</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>27</td>
<td>26</td>
<td>23</td>
<td>18</td>
<td>17</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>16</td>
<td>17</td>
<td>14</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>17</td>
<td>14</td>
<td>23</td>
<td>17</td>
<td>13</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>20</td>
<td>19</td>
<td>11.54</td>
<td>9</td>
<td>8</td>
<td>6.82</td>
<td>5.05</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>16</td>
<td>13</td>
<td>13</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>28</td>
<td>26</td>
<td>27</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>19</td>
<td>13.94</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>25</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>12</td>
<td>13</td>
<td>20</td>
</tr>
</tbody>
</table>

- ‘Wide’ form: A row for each subject.
- Note that there are some missing data due to drop-out.
Exploratory analyses

1. Summarize the depression scores by visit and treatment group

2. Examine within-person correlations among depression scores, graphically and numerically

3. Graph depression scores over time, by treatment group; include a lowess line (smoother) for each group to summarize trends

4. Plot individual trajectories by treatment group
Regression analyses

5. Consider collapsing the longitudinal series for each subject into a summary statistic between the baseline and sixth depression scores. Use methods for independent data to evaluate the association between change in depression scores and estrogen treatment.

6. Reshape the data into long form and evaluate longitudinal associations between depression scores and treatment using GEE:
 - Use visit as a linear variable
 - Use visit as a categorical variable
 - Evaluate whether the treatment effect varies over time
Reshape the data

Recall what the data look like in wide form

<table>
<thead>
<tr>
<th>subj</th>
<th>group</th>
<th>dep0</th>
<th>dep1</th>
<th>dep2</th>
<th>dep3</th>
<th>dep4</th>
<th>dep5</th>
<th>dep6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>18</td>
<td>17</td>
<td>18</td>
<td>15</td>
<td>17</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>27</td>
<td>26</td>
<td>23</td>
<td>18</td>
<td>17</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>16</td>
<td>17</td>
<td>14</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>17</td>
<td>14</td>
<td>23</td>
<td>17</td>
<td>13</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

For some analyses, reshape the data from wide form to long form

```
. reshape long dep, i(subj) j(visit)
(note: j = 0 1 2 3 4 5 6)
```

Data wide -> long

<table>
<thead>
<tr>
<th></th>
<th>wide</th>
<th>-></th>
<th>long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of obs.</td>
<td>61</td>
<td>-></td>
<td>427</td>
</tr>
<tr>
<td>Number of variables</td>
<td>9</td>
<td>-></td>
<td>4</td>
</tr>
<tr>
<td>j variable (7 values)</td>
<td></td>
<td>-></td>
<td>visit</td>
</tr>
<tr>
<td>xij variables:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dep0 dep1 ... dep6</td>
<td></td>
<td>-></td>
<td>dep</td>
</tr>
</tbody>
</table>
Reshape the data

‘Long’ form: A row for each observation

<table>
<thead>
<tr>
<th>subj</th>
<th>visit</th>
<th>group</th>
<th>dep</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>placebo</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>placebo</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>placebo</td>
<td>23</td>
</tr>
</tbody>
</table>
Answers
Summaries by group and visit

```stata
. sort group
. by group: summarize dep0 dep1 dep2 dep3 dep4 dep5 dep6
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>dep0</td>
<td>27</td>
<td>20.78</td>
<td>3.95</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td>dep1</td>
<td>27</td>
<td>16.48</td>
<td>5.28</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>dep2</td>
<td>22</td>
<td>15.89</td>
<td>6.12</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>dep3</td>
<td>17</td>
<td>14.13</td>
<td>4.97</td>
<td>4.19</td>
<td>22</td>
</tr>
<tr>
<td>dep4</td>
<td>17</td>
<td>12.27</td>
<td>5.84</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>dep5</td>
<td>17</td>
<td>11.40</td>
<td>4.43</td>
<td>3.03</td>
<td>18</td>
</tr>
<tr>
<td>dep6</td>
<td>17</td>
<td>10.89</td>
<td>4.68</td>
<td>3.45</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>dep0</td>
<td>34</td>
<td>21.25</td>
<td>3.57</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td>dep1</td>
<td>34</td>
<td>13.37</td>
<td>5.56</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>dep2</td>
<td>31</td>
<td>11.74</td>
<td>6.58</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>dep3</td>
<td>29</td>
<td>9.13</td>
<td>5.48</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>dep4</td>
<td>28</td>
<td>8.83</td>
<td>4.67</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>dep5</td>
<td>28</td>
<td>7.31</td>
<td>5.74</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>dep6</td>
<td>28</td>
<td>6.59</td>
<td>4.73</td>
<td>1</td>
<td>23</td>
</tr>
</tbody>
</table>

• **Note**: There are fewer observations observed over time
Correlation

- All correlations are positive
- Strong correlation between adjacent visits
Depression scores over time

- separate dep, by(group)

- graph twoway (scatter dep0 visit, jitter(10) mcolor(green))
 (scatter dep1 visit, jitter(10) mcolor(purple)) ///
 (lowess dep0 visit, lcolor(green)) (lowess dep1 visit, lcolor(purple))

- For each treatment arm, mean depression scores decrease over time
Individual trajectories

- Reveals the complexity of individual trajectories
- Note that several patients drop out after the second visit
Simple difference

`. gen diff=dep6-dep0
`. ttest diff, by(group) unequal

Two-sample t test with unequal variances

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>placebo</td>
<td>17</td>
<td>-9.633529</td>
<td>1.321784</td>
<td>5.449855</td>
<td>-12.43559 -6.831472</td>
</tr>
<tr>
<td>combined</td>
<td>45</td>
<td>-12.79311</td>
<td>.8158414</td>
<td>5.47283</td>
<td>-14.43733 -11.14889</td>
</tr>
<tr>
<td>diff</td>
<td>5.077899</td>
<td>1.581447</td>
<td>1.845991</td>
<td>8.309808</td>
<td></td>
</tr>
</tbody>
</table>

diff = mean(placebo) - mean(estrogen)
t = 3.2109
Ho: diff = 0
Satterthwaite’s degrees of freedom = 29.5287
Ha: diff < 0
Pr(T < t) = 0.9984
Ha: diff != 0
Pr(|T| > |t|) = 0.0032
Ha: diff > 0
Pr(T > t) = 0.0016

• Clear decreases over time; larger decreases among estrogen group
• Limited to those with complete measurement series
A special feature of longitudinal data is that the $m = 7$ observations that are nested within the $n = 61$ subjects are ordered in time.

We can consider *marginal models* to model the within-subject dependence by allowing us to specify the covariance structure across the nested observations.

Parameters describing the covariance must be estimated along with typical regression coefficients.

A variety of options are available to describe the covariance.

Some covariance patterns require more information (i.e., require more parameters to be estimated than others).

Recall, we identify the data as a ‘panel’ data set using the *xtset* command in Stata.
To account for the repeated measures we can use generalized estimating
equations which include all of the data over the time points in a marginal
model for the mean response and account for the longitudinal correlation

\[g(\mathbb{E}[Y_{ij} \mid x_{ij}]) = x_{ij} \beta \quad \text{and} \quad \text{Corr}[Y_{ij}, Y_{ij'}] = \rho(\alpha) \]

Assumptions

- Observations are independent across subjects
- Observations could be correlated within subjects
- Missing data are missing completely at random
Using the GEE framework, we consider the ‘cross-sectional’ model where we are interested in the average treatment effect over time

\[E[Y_{ij} \mid x_{ij}] = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} \]

with

- \(Y_{ij} \): continuous depression score (dep)
- \(x_{ij1} \): continuous variable for visit (visit)
- \(x_{ij2} \): binary treatment group with 1=estrogen, 0=placebo (group)

For the continuous outcome, we use an identity link, `link(iden)`, in the Gaussian family, `fam(gaus)`; these are the default.

In Stata, `xtgee` allows us to specify various working covariance structures through the `corr` option; the command `estat wcorr` allows us to view the working correlation matrix.
Correlation structures

- **Independence:** Observations are assumed to be independent
 - For correlation between any two observations on the same subject, we assume that $\text{Corr}[Y_{ij}, Y_{ij'}] = 0$
 - It is unlikely that for any subject, depression scores are independent from one visit to the next

- **Exchangeable:** Correlations are assumed to be constant between any two observations on the same subject; $\text{Corr}[Y_{ij}, Y_{ij'}] = \alpha$

- **AR(1):** Correlation is assumed to decay as a function of time or distance between observations; $\text{Corr}[Y_{ij}, Y_{ij'}] = \alpha |j - j'|$
 - Likely to be appropriate in cases where there are a reasonable number of repeated measurements over time
 - Given that our data are measured over time, using the AR(1) correlation might help increase efficiency of SE estimation

- **Unstructured:** No relationship is imposed on dependence over time or within subjects; $\text{Corr}[Y_{ij}, Y_{ij'}] = \alpha_{jj'}$

 ★ Robust variance estimator protects against incorrect choice
. xtgee dep visit i.group, corr(ind) robust

GEE population-averaged model
Number of obs = 356
Group variable: subj Number of groups = 61
Link: identity Obs per group:
Family: Gaussian min = 2
Correlation: independent avg = 5.8
max = 7
Wald chi2(2) = 188.72
Scale parameter: 29.02175 Prob > chi2 = 0.0000
(Std. Err. adjusted for clustering on subj)

<table>
<thead>
<tr>
<th></th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>dep Coef. Std. Err. z P></td>
<td>z</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>visit -1.921912 .1413007 -13.60 0.000 -2.198857 -1.644968</td>
<td></td>
</tr>
<tr>
<td>group estrogen -3.208912 1.08604 -2.95 0.003 -5.337511 -1.080313</td>
<td></td>
</tr>
<tr>
<td>_cons 20.19473 .8278936 24.39 0.000 18.57209 21.81737</td>
<td></td>
</tr>
</tbody>
</table>

B French (Module 6) Longitudinal Data Analysis SISCR 2018 71 / 156
GEE-AR(1)

```
. xtgee dep visit i.group, corr(ar1) robust
```

GEE population-averaged model

Group and time vars: subj visit Number of obs = 356
Link: identity Number of groups = 61
Family: Gaussian Obs per group:
Correlation: AR(1) min = 2
 avg = 5.8
 max = 7
Wald chi2(2) = 255.61
Scale parameter: 29.8609 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on subj)

```
| dep  | Coef. | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|------|-------|-----------|-------|------|----------------------|
| visit| -2.073222 | .1300662   | -15.94 | 0.000 | -2.328147 -1.818297 |
| group|       |           |       |      |                      |
| estrogen| -2.529295 | .9610062   | -2.63  | 0.008 | -4.412832 - .6457574 |
| _cons | 21.01002  | .7325074   | 28.68  | 0.000 | 19.57433  22.44571  |
```

B French (Module 6) Longitudinal Data Analysis SISCR 2018 72 / 156
Working correlation structure
Examine the correlation structure estimated by the model

. estat wcorr

Estimated within-subj correlation matrix R:
<table>
<thead>
<tr>
<th></th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
<th>c4</th>
<th>c5</th>
<th>c6</th>
<th>c7</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2</td>
<td>.6447567</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r3</td>
<td>.4157113</td>
<td>.6447567</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r4</td>
<td>.2680326</td>
<td>.4157113</td>
<td>.6447567</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r5</td>
<td>.1728158</td>
<td>.2680326</td>
<td>.4157113</td>
<td>.6447567</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r6</td>
<td>.1114242</td>
<td>.1728158</td>
<td>.2680326</td>
<td>.4157113</td>
<td>.6447567</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>r7</td>
<td>.0718415</td>
<td>.1114242</td>
<td>.1728158</td>
<td>.2680326</td>
<td>.4157113</td>
<td>.6447567</td>
<td>1</td>
</tr>
</tbody>
</table>

Compare with simple pairwise correlations

. corr dep0 dep1 dep2 dep3 dep4 dep5 dep6
(obs=45)

<table>
<thead>
<tr>
<th></th>
<th>dep0</th>
<th>dep1</th>
<th>dep2</th>
<th>dep3</th>
<th>dep4</th>
<th>dep5</th>
<th>dep6</th>
</tr>
</thead>
<tbody>
<tr>
<td>dep0</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dep1</td>
<td>0.1922</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dep2</td>
<td>0.3904</td>
<td>0.4982</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dep3</td>
<td>0.3958</td>
<td>0.5258</td>
<td>0.8672</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dep4</td>
<td>0.1658</td>
<td>0.3933</td>
<td>0.7357</td>
<td>0.7831</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dep5</td>
<td>0.2848</td>
<td>0.3674</td>
<td>0.7500</td>
<td>0.8520</td>
<td>0.8449</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>dep6</td>
<td>0.2688</td>
<td>0.2795</td>
<td>0.6900</td>
<td>0.7967</td>
<td>0.7894</td>
<td>0.9014</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
Modeling time

- Valid inference from GEE requires that the mean model is correct
- We have two covariates: treatment group is binary, time is ?
- Instead of a continuous variable (or, grouped linear term) for time, consider a categorical variable

\[E[Y_{ij} | x_{ij}] = \beta_0 + \beta_2 x_{ij2} + \beta_3 x_{ij3} + \beta_4 x_{ij4} + \beta_5 x_{ij5} + \beta_6 x_{ij6} + \beta_7 x_{ij7} + \beta_8 x_{ij8} \]

with, in addition to \(x_{ij2} \) representing the treatment variable (group)

- \(x_{ij3} \): dummy variable for visit 1 compared to visit 0
- \(x_{ij4} \): dummy variable for visit 2 compared to visit 0
- \(\vdots \)
- \(x_{ij8} \): dummy variable for visit 6 compared to visit 0
GEE-AR(1), categorical time

```
.xtgee dep i.visit i.group, corr(ar1) robust

GEE population-averaged model
Number of obs      =       356
Group and time vars: subj visit
Number of groups   =       61
Link:    identity
Family:  Gaussian
Correlation: AR(1)
Wald chi2(7) =   288.60

Scale parameter: 26.7531

| dep    | Coef.     | Std. Err. | z     | P>|z|     |      [95% Conf. Interval] |
|--------|-----------|-----------|-------|---------|--------------------------|
| visit  |           |           |       |         |                           |
| 1      | -6.294262 | .7775699  | -8.09 | 0.000   | -7.818271 -4.770253      |
| 2      | -7.341596 | .8475509  | -8.66 | 0.000   | -9.002766 -5.680427      |
| 3      | -9.258931 | .7719962  | -11.99| 0.000   | -10.77202 -7.745847      |
| 4      | -10.25842 | .8352919  | -12.28| 0.000   | -11.89557 -8.621282      |
| 5      | -11.69253 | .807447   | -14.48| 0.000   | -13.2751 -10.10997       |
| 6      | -12.43824 | .7614791  | -16.33| 0.000   | -13.93071 -10.94577      |
| group  |           |           |       |         |                           |
| estrogen| -2.593467 | .9610867  | -2.70 | 0.007   | -4.477163 -0.709772      |
| _cons  | 22.48587  | .7687195  | 29.25 | 0.000   | 20.9792  23.99253        |
```
Modeling time

• Strong evidence that depression scores vary over time
 . testparm i.visit

 (1) 1.visit = 0
 (2) 2.visit = 0
 (3) 3.visit = 0
 (4) 4.visit = 0
 (5) 5.visit = 0
 (6) 6.visit = 0

 chi2(6) = 287.46
 Prob > chi2 = 0.0000

• In the model with continuous visit, the difference in mean score
 between groups was \(-2.53\) and it was highly significant ($p = 0.008$)
• When considering categorical visit, the difference in mean score
 between groups was \(-2.59\) and it was highly significant ($p = 0.007$)
• Noting that the estimated treatment effect is the same in both
 models, we opt for the parsimony of the model with continuous visit
Model with interaction

Consider a model that allows the treatment effect to depend on time

- The model of interest becomes

\[
E[Y_{ij} \mid x_{ij}] = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \beta_3 (x_{ij1} \times x_{ij2})
\]

where \(Y_{ij}\) is the continuous depression score, \(x_{ij1}\) is a continuous variable for visit, and \(x_{ij2}\) is the treatment variable

- Model includes their main effects and the interaction term

- For subjects in the placebo group (\(x_{ij2} = 0\)), the model is

\[
E[Y_{ij} \mid x_{ij}] = \beta_0 + \beta_1 x_{ij1}
\]

- For subjects in the estrogen group (\(x_{ij2} = 1\)), the model is

\[
E[Y_{ij} \mid x_{ij}] = (\beta_0 + \beta_2) + (\beta_1 + \beta_3) x_{ij1}
\]

- Now we can compare whether the mean change in depression score over time differs between treatment groups (‘longitudinal’ model)
GEE-AR(1), continuous time, interaction

```
. xtgee dep c.visit##i.group, corr(ar1) robust

GEE population-averaged model
Group and time vars: subj visit
Link: identity
Family: Gaussian
Correlation: AR(1)
Number of obs = 356
Number of groups = 61
Obs per group: min = 2
avg = 5.8
max = 7
Wald chi2(3) = 325.29
Prob > chi2 = 0.0000
(Std. Err. adjusted for clustering on subj)

| dep | Coef.  | Std. Err. | z    | P>|z|  | [95% Conf. Interval] |
|-----|--------|-----------|------|------|----------------------|
| visit | -1.645136 | 0.2032329  | -8.09 | 0.000 | -2.043465 to -1.246807 |
| group | estrogen | -0.668246 | 0.9514551 | -0.70 | 0.482 | -2.533064 to 1.196572 |
| group#c.visit | estrogen | -0.7209406 | 0.250909 | -2.87 | 0.004 | -1.212713 to -0.2291681 |
| _cons | 19.9757 | 0.7700831  | 25.94 | 0.000 | 18.46636 to 21.48503 |
```
Interpretation

• Estimate the change over time for the estrogen group by adding the coefficients for the visit variable and the interaction term

 \[\text{lincom visit + 1.group#c.visit} \]

 (1) visit + 1.group#c.visit = 0

| dep | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|-------|-----------|-----|------|---------------------|
| (1) | -2.366076 | .1471451 | -16.08 | 0.000 | -2.654475 -2.077677 |

• For a population of women on placebo treatment, mean depression score decreases by approximately 1.65 points for each additional visit, 95% CI: (-2.04, -1.25)

• For a population of women on estrogen treatment, mean depression score decreases by approximately 2.37 points for each additional visit, 95% CI: (-2.65, -2.08)

• Strong evidence that these associations are different \((p = 0.004) \)
Summary

• GEE is specified by a mean model and a correlation model
 ▶ We created a linear regression model for the average depression score
 and modeled the longitudinal correlation using an AR(1) structure

• GEE requires that the mean model is correctly specified
 ▶ We explored different options for modeling temporal trends

• GEE provides valid estimates and standard errors for the regression parameters even under misspecification of the correlation structure, but efficiency gains are possible if the correlation model is correct
 ▶ We chose AR(1) with the robust option

• Model with a group-by-time interaction term facilitated estimation of changes over time within groups and between-group comparisons in temporal trends
 ▶ Contrasted this with a cross-sectional model that compared the mean depression score between groups over all times
Overview

Review: Longitudinal data analysis

Case study: Longitudinal depression scores

Case study: Indonesian Children’s Health Study

Case study: Carpal tunnel syndrome

Summary and resources
Indonesian Children’s Health Study (ICHS)

- Determine the effects of vitamin A deficiency in preschool children
- \(n = 275 \) children examined for respiratory infection at up to 6 visits
- Xerophthalmia is an ocular manifestation of vitamin A deficiency
- **Goal**: Evaluate association between vitamin A deficiency and risk of respiratory infection

<table>
<thead>
<tr>
<th>Xerophthalmia</th>
<th>Infection</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3 4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>77 229 154 196 176 143 65 5</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>8 30 30 15 9 7 1 0</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>0 1 9 10 15 8 4 1</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>0 0 4 3 0 0 0 0</td>
</tr>
</tbody>
</table>
Data

Multiple records per person, with age in months, centered at 36 months, and time indicating visit number
Exploratory analyses

1. Plot vitamin A deficiency and infection status, by age, for a sample of individuals
2. Plot percent with respiratory infection versus age, by presence or absence of vitamin A deficiency
3. Explore correlation structure by visit number, and calculate percent with respiratory infection at each visit
Regression analyses

4. Evaluate the association between respiratory infection and vitamin A deficiency using an ordinary logistic regression model

5. Use GEE to estimate the population-averaged odds ratio for respiratory infection, comparing those with vitamin A deficiency to those without, given equivalent values of other covariates. Explore multiple specifications of working correlation

6. Use GLMM to estimate the conditional odds ratio for respiratory infection, comparing a typical individual with vitamin A deficiency to a typical individual without, given equivalent values of other covariates. Estimate the variability in the probability of respiratory infection across individuals
Answers
Individual trajectories
Monthly averages

Proportion with Respiratory Infection vs. Age (years)

- No Xerop
- Xerop

Age (years):
0 1 2 3 4 5 6 7

Proportion with Respiratory Infection:
0.0 0.2 0.4 0.6 0.8 1.0
Yearly averages

Age (years) vs. Proportion with Respiratory Infection

Proportion with Respiratory Infection

No Xerop

Xerop

Age (years)

B French (Module 6)
Logistic regression model

```r
> summary(glm(infection ~ xerop + age + gender + hfora + cost + sint,
          data=ichs, family="binomial"))
```

Coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|----------------|----------|------------|---------|----------|
| (Intercept) | -2.42134 | 0.15920 | -15.21 | < 2e-16 *** |
| xerop | 0.73148 | 0.43591 | 1.68 | 0.09334 . |
| age | -0.03188 | 0.00634 | -5.03 | 4.9e-07 *** |
| gender | -0.39364 | 0.21965 | -1.79 | 0.07311 . |
| hfora | -0.04944 | 0.02012 | -2.46 | 0.01401 * |
| cost | -0.58029 | 0.16722 | -3.47 | 0.00052 *** |
| sint | -0.16536 | 0.16851 | -0.98 | 0.32645 |

- \(\exp \beta_1 = 2.08 \)
- 95% CI: (0.88, 4.88)
- Does not take into account within-person correlation
GEE motivation

Do vitamin A deficient children have an increased risk of infection?

\[
\mu_{ij} = E[Y_{ij} | x_{ij}]
\]

\[
= P[Y_{ij} = 1 | x_{ij}]
\]

\[
\text{logit } \mu_{ij} = \log \frac{\mu_{ij}}{1 - \mu_{ij}}
\]

\[
= \beta_0 + \beta_1 \text{Xerophthalmia}_{ij} + \cdots
\]

\[
\approx \log \frac{P[Y_{ij} = 1 | x_{ij}]}{P[Y_{ij} = 0 | x_{ij}]}
\]

- \(\exp \beta_1\) represents the ratio of the expected odds of respiratory infection among a population of vitamin A deficient children to that for a population of children replete with vitamin A of the same age, gender, \ldots
- \(\exp \beta_1\) is therefore a \textit{population-averaged} parameter
- Respiratory infection is rare so odds ratio approximates relative risk
Correlations

- Use visit time (not age) to obtain a correlation matrix with $n = 146–229$ observations per cell

<table>
<thead>
<tr>
<th></th>
<th>Time 1</th>
<th>Time 2</th>
<th>Time 3</th>
<th>Time 4</th>
<th>Time 5</th>
<th>Time 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 2</td>
<td>0.06</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 3</td>
<td>0.07</td>
<td>0.11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 4</td>
<td>0.24</td>
<td>-0.03</td>
<td>0.06</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 5</td>
<td>0.07</td>
<td>0.26</td>
<td>0.19</td>
<td>-0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Time 6</td>
<td>0.05</td>
<td>0.12</td>
<td>-0.07</td>
<td>0.06</td>
<td>0.10</td>
<td>1</td>
</tr>
</tbody>
</table>

13 % 5 % 7 % 4 % 15 % 9 %
Covariance structure

• For a binary outcome, variance depends on mean

\[
\text{Var}[Y_{ij}] = \text{E}[Y_{ij}](1 - \text{E}[Y_{ij}])
\]

• Correlation also depends (in a somewhat complicated way) on pairwise means

• NB
 ▶ With respect to age, data are neither balanced nor complete
 ▶ Even if our analysis will be a function of age, examination of covariance and correlation matrices with respect to visit time is useful
 ▶ Dependence of correlation on pairwise means motivates alternate methods that model odds ratios instead of correlations
Covariance structure

- Odds ratios measure the association between two binary variables
- Here, binary outcomes at two different visit times

<table>
<thead>
<tr>
<th></th>
<th>Time 1</th>
<th>Time 2</th>
<th>Time 3</th>
<th>Time 4</th>
<th>Time 5</th>
<th>Time 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 1</td>
<td>∞</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 2</td>
<td>1.93</td>
<td>∞</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 3</td>
<td>2.10</td>
<td>4.62</td>
<td>∞</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 4</td>
<td>8.60</td>
<td>0</td>
<td>2.38</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 5</td>
<td>1.76</td>
<td>11.9</td>
<td>4.68</td>
<td>0.92</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>Time 6</td>
<td>1.63</td>
<td>3.73</td>
<td>0</td>
<td>2.18</td>
<td>2.14</td>
<td>∞</td>
</tr>
</tbody>
</table>
Covariance structure

- Variance model
 \[\text{Var}[Y_{ij} \mid x_{ij}] = \mu_{ij}(1 - \mu_{ij}) \]

- Consider various specifications for the ‘working’ correlation structure
 - Independence
 - Exchangeable
 - Auto-regressive

NB: In practice, selection of a working correlation structure should be guided by a priori knowledge and/or exploratory analysis
• geepack implements estimating equations for β, α, and ϕ

• geeglm
 ▶ Syntax similar to glm; returns an object similar to a glm object
 ▶ An anova method provides multivariate Wald tests for joint hypotheses
 ▶ Calls a fitter function geese to solve the estimating equations

• geese
 ▶ Provides estimation and inference for β, α, and ϕ
 ▶ Model objects are available within geeglm objects

```r
names(m1)
names(m1$geese)
m1$geese$vbeta
```
R commands

load("ichs.RData")

library(geepack)

m1 <- geeglm(infection ~ xerop + age + gender + hfora + cost + sint,
 id=id, data=ichs, family="binomial", corstr="independence")

m2 <- geeglm(infection ~ xerop + age + gender + hfora + cost + sint,
 id=id, data=ichs, family="binomial", corstr="exchangeable")

m3 <- geeglm(infection ~ xerop + age + gender + hfora + cost + sint,
 id=id, data=ichs, family="binomial", corstr="ar1"
> summary(m1)

Coefficients:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Std.err</th>
<th>Wald</th>
<th>Pr(>W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-2.42134</td>
<td>0.16907</td>
<td>205.10</td>
</tr>
<tr>
<td>xerop</td>
<td>0.73148</td>
<td>0.42246</td>
<td>3.00</td>
</tr>
<tr>
<td>age</td>
<td>-0.03188</td>
<td>0.00624</td>
<td>26.08</td>
</tr>
<tr>
<td>gender</td>
<td>-0.39364</td>
<td>0.23571</td>
<td>2.79</td>
</tr>
<tr>
<td>hfora</td>
<td>-0.04944</td>
<td>0.02467</td>
<td>4.01</td>
</tr>
<tr>
<td>cost</td>
<td>-0.58029</td>
<td>0.16928</td>
<td>11.75</td>
</tr>
<tr>
<td>sint</td>
<td>-0.16536</td>
<td>0.14865</td>
<td>1.24</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Estimated Scale Parameters:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Std.err</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Correlation: Structure = independence

Number of clusters: 275 Maximum cluster size: 6
GEE-exchangeable

```r
> summary(m2)

Coefficients:

|        | Estimate | Std.err | Wald  | Pr(>|W|) |
|--------|----------|---------|-------|----------|
| (Intercept) | -2.39852 | 0.17033 | 198.30 | < 2e-16 *** |
| xerop   | 0.62693  | 0.43618 | 2.07  | 0.15063 |
| age     | -0.03162 | 0.00627 | 25.44 | 4.6e-07 *** |
| gender  | -0.41887 | 0.23631 | 3.14  | 0.07631 . |
| hfora   | -0.05282 | 0.02464 | 4.60  | 0.03205 * |
| cost    | -0.57171 | 0.16846 | 11.52 | 0.00069 *** |
| sint    | -0.16208 | 0.14556 | 1.24  | 0.26550 |

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Estimated Scale Parameters:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std.err</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.02</td>
<td>0.655</td>
</tr>
</tbody>
</table>

Correlation: Structure = exchangeable  Link = identity

Estimated Correlation Parameters:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std.err</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>0.0452</td>
<td>0.0449</td>
</tr>
</tbody>
</table>

Number of clusters: 275  Maximum cluster size: 6
> summary(m3)

Coefficients:

| Estimate | Std.err | Wald   | Pr(>|W|) |
|----------|---------|--------|----------|
| (Intercept) | -2.41535 | 0.16926 | 203.64   | < 2e-16 *** |
| xerop     | 0.66981  | 0.44020 | 2.32     | 0.12810   |
| age       | -0.03197 | 0.00625 | 26.13    | 3.2e-07 *** |
| gender    | -0.39516 | 0.23579 | 2.81     | 0.09376   |
| hfora     | -0.05095 | 0.02464 | 4.28     | 0.03863 * |
| cost      | -0.57446 | 0.16839 | 11.64    | 0.00065 *** |
| sint      | -0.17108 | 0.14754 | 1.34     | 0.24624   |

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Estimated Scale Parameters:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Std.err</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Correlation: Structure = ar1  Link = identity

Estimated Correlation Parameters:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Std.err</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>0.0526</td>
</tr>
</tbody>
</table>

Number of clusters: 275  Maximum cluster size: 6
Results

<table>
<thead>
<tr>
<th></th>
<th>$\hat{\beta}_1$ (SE)</th>
<th>$\exp(\hat{\beta}_1)$ (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independence</td>
<td>0.73 (0.42)</td>
<td>2.08 (0.91, 4.76)</td>
</tr>
<tr>
<td>Exchangeable</td>
<td>0.63 (0.44)</td>
<td>1.87 (0.80, 4.40)</td>
</tr>
<tr>
<td>Auto-regressive</td>
<td>0.67 (0.44)</td>
<td>1.95 (0.83, 4.63)</td>
</tr>
</tbody>
</table>

- Vitamin A deficient children have an increased risk of respiratory infection, but confidence interval includes the null-hypothesized value.
- Geese provides estimation and inference for $\beta$, $\alpha$, and $\phi$.
- Cannot reject the hypothesis that $\alpha = 0$.
- **Note**: Model fit can be evaluated using QIC (Pan, 2001).
Working correlation structures

Exchangeable:
\[
\begin{bmatrix}
1 \\
0.045 & 1 \\
0.045 & 0.045 & 1 \\
0.045 & 0.045 & 0.045 & 1 \\
0.045 & 0.045 & 0.045 & 0.045 & 1 \\
0.045 & 0.045 & 0.045 & 0.045 & 0.045 & 1
\end{bmatrix}
\]

Auto-regressive:
\[
\begin{bmatrix}
1 \\
0.053 & 1 \\
0.003 & 0.053 & 1 \\
0.000 & 0.003 & 0.053 & 1 \\
0.000 & 0.000 & 0.003 & 0.053 & 1 \\
0.000 & 0.000 & 0.000 & 0.003 & 0.053 & 1
\end{bmatrix}
\]
Stata commands

* Declare the dataset to be "panel" data, grouped by id
  * with time variable time
  `xtset id time`

* Fit models with an exchangeable correlation structure
  `xtgee infection i.xerop age gender hfora cost sint,`
  `    family(binomial) link(logit) corr(exch) robust`

* Examine working correlation structure
  `estat wcorr`
GEE-exchangeable

GEE population-averaged model

Number of obs = 1200
Number of groups = 275
Group variable: id
Link: logit
Obs per group: min = 1
Family: binomial avg = 4.4
Correlation: exchangeable max = 6
Scale parameter: 1

Wald chi2(6) = 41.27
Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on id)

| infection   | Coef.     | Std. Err. | z   | P>|z| | [95% Conf. Interval] |
|-------------|-----------|-----------|-----|-----|----------------------|
| xerop       | 0.6269335 | 0.4369803 | 1.43| 0.151| -0.2295322 - 1.483399 |
| age         | -0.0316238| 0.006281  | -5.03| 0.000| -0.0439343 - 0.0193133 |
| gender      | -0.4188661| 0.2367394 | -1.77| 0.077| -0.8828669 - 0.451347 |
| hfora       | -0.0528237| 0.0246853 | -2.14| 0.032| -0.1012059 - 0.0044414 |
| cost        | -0.5717089| 0.1687711 | -3.39| 0.001| -0.9024942 - 0.2409237 |
| sint        | -0.162076  | 0.1458239 | -1.11| 0.266| -0.4478856 - 0.1237335 |
| _cons       | -2.39852   | 0.1706357 | -14.06| 0.000| -2.73296 - 2.06408    |
. estat wcorr

Estimated within-id correlation matrix R:

<table>
<thead>
<tr>
<th></th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
<th>c4</th>
<th>c5</th>
<th>c6</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2</td>
<td>0.0451627</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r3</td>
<td>0.0451627</td>
<td>0.0451627</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r4</td>
<td>0.0451627</td>
<td>0.0451627</td>
<td>0.0451627</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r5</td>
<td>0.0451627</td>
<td>0.0451627</td>
<td>0.0451627</td>
<td>0.0451627</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>r6</td>
<td>0.0451627</td>
<td>0.0451627</td>
<td>0.0451627</td>
<td>0.0451627</td>
<td>0.0451627</td>
<td>1</td>
</tr>
</tbody>
</table>
Mixed-effects models

Do vitamin A deficient children have an increased risk of infection?

\[
\mu_{ij}^* = E[Y_{ij} \mid \gamma_{0i}]
= P[Y_{ij} = 1 \mid \gamma_{0i}]
\]

\[
\text{logit } \mu_{ij}^* = \log \frac{\mu_{ij}^*}{1 - \mu_{ij}^*}
= (\beta_0^* + \gamma_{0i}) + \beta_1^* \text{Xerophthalmia}_{ij} + \cdots
\]

for \(i = 1, \ldots, 275\) and \(j = 1, \ldots, m_i\);

- \(\exp \beta_1^*\) represents the ratio of the expected odds of respiratory infection for a typical individual with vitamin A deficiency to that for a typical individual with a sufficient amount of vitamin A of the same age, gender, \ldots

- \(\exp \beta_1^*\) is therefore a **conditional** parameter

- Respiratory infection is rare so odds ratio approximates relative risk
R commands

• Use the glmer command in the lme4 library

```r
library(lme4)
?glmer

m_ri <- glmer(infection ~ (1 | id) + factor(xerop) + age + factor(gender) + hfora + cost + sint,
 family=binomial, data=ichs, nAGQ=7)

methods(class="merMod")
expit <- function(x){exp(x)/(1+exp(x))}
expit(fixef(m_ri)[1])
expit(fixef(m_ri)[1]-1.96*sqrt(VarCorr(m_ri)$id[[1]]))
expit(fixef(m_ri)[1]+1.96*sqrt(VarCorr(m_ri)$id[[1]]))
```
Random intercepts model

```r
> summary(m_ri)
```

Random effects:

<table>
<thead>
<tr>
<th>Groups</th>
<th>Name</th>
<th>Variance</th>
<th>Std.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>(Intercept)</td>
<td>0.794</td>
<td>0.891</td>
</tr>
</tbody>
</table>

Number of obs: 1200, groups: id, 275

Fixed effects:

|              | Estimate | Std. Error | z     | Pr(>|z|) |
|--------------|----------|------------|-------|----------|
| (Intercept)  | -2.6931  | 0.2218     | -12.14| < 2e-16  *** |
| factor(xerop)1 | 0.6073  | 0.4863     | 1.25  | 0.21173  |
| age          | -0.0336  | 0.0074     | -4.54 | 5.5e-06  *** |
| factor(gender)1 | -0.4403 | 0.2642     | -1.67 | 0.09564  . |
| hfora        | -0.0555  | 0.0229     | -2.42 | 0.01553  *  |
| cost         | -0.5968  | 0.1743     | -3.42 | 0.00062  *** |
| sint         | -0.1624  | 0.1749     | -0.93 | 0.35321  |
Interpreting random effects components

- For continuous outcomes interpreting random effects is ‘easy’ because their standard deviation is on the scale of the outcome.
- For binary outcomes the standard deviation is on the log-odds scale.
- Recall for a GLMM with random intercepts

\[ \gamma_0 \sim N(0, G_{11}) \iff (\beta_0^* + \gamma_0) \sim N(\beta_0^*, G_{11}) \]

- In the ICHS analysis the intercept corresponds to the log odds of respiratory infection among females, age 36 months, . . . , with a sufficient amount of vitamin A.
- We can use \( \hat{\beta}_0^* \) and \( \hat{G}_{11} \) to form an interval to quantify variability in the probability of respiratory infection across these individuals.

\[
\text{expit}(\hat{\beta}_0^* \pm 1.96 \times \hat{G}_{11}) = \frac{\exp(\hat{\beta}_0^* \pm 1.96 \times \hat{G}_{11})}{1 + \exp(\hat{\beta}_0^* \pm 1.96 \times \hat{G}_{11})},
\]

which is calculated to be 0.06 (0.01, 0.28).
- **NB**: This is not a confidence interval for \( \beta_0^* \).
Conditional and marginal effects

- Parameter estimates obtained from a **marginal** model (as obtained via a GEE) estimate **population-averaged** contrasts

- Parameter estimates obtained from a **conditional** model (as obtained via a GLMM) estimate **subject-specific** contrasts

- In a linear model for a Gaussian outcome with an identity link these contrasts are equivalent; not the case with non-linear models
  - Depends on the outcome distribution
  - Depends on the specified random effects
Conditional and marginal effects

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Coefficient</th>
<th>Fitted conditional model</th>
<th>Random intercept</th>
<th>Random intercept/slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>Intercept</td>
<td>Marginal</td>
<td>Marginal</td>
<td>Marginal</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Marginal</td>
<td>Marginal</td>
<td>Marginal</td>
</tr>
<tr>
<td>Count</td>
<td>Intercept</td>
<td>Conditional</td>
<td>Conditional</td>
<td>Conditional</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Marginal</td>
<td>Conditional</td>
<td>Conditional</td>
</tr>
<tr>
<td>Binary</td>
<td>Intercept</td>
<td>Conditional</td>
<td>Conditional</td>
<td>Conditional</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Conditional</td>
<td>Conditional</td>
<td>Conditional</td>
</tr>
</tbody>
</table>

★ Marginal = population-averaged; conditional = subject-specific
Stata commands

* Declare the dataset to be "panel" data, grouped by id
* with time variable time
  xtset id time

* Fit a model with random intercepts
  help melogit
  melogit infection i.xerop age i.gender hfora cost sint || id:

* Obtain predicted probabilities of infection,
* setting the random effects to 0
  margins i.xerop, predict(mu fixed)
Random intercepts model

Mixed-effects logistic regression

Group variable: id

Number of obs = 1200
Number of groups = 275

Obs per group: min = 1
avg = 4.4
max = 6

Integration method: mvaghermite

Integration points = 7

Wald chi2(6) = 35.62
Prob > chi2 = 0.0000

Log likelihood = -334.75137

| infection | Coef.  | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|-----------|--------|-----------|-------|------|---------------------|
| 1.xerop   | .6317689 | .4799255  | 1.32  | 0.188| -.3088678 to 1.572406 |
| age       | -.0336883 | .0072704 | -4.63 | 0.000| -.0479379 to -.0194386 |
| 1.gender  | -.4357064 | .2574121 | -1.69 | 0.091| -.9402248 to .068812 |
| hfora     | -.0547912 | .0225386 | -2.43 | 0.015| -.0989661 to -.0106164 |
| cost      | -.598695  | .1739193 | -3.44 | 0.001| -.9395706 to -.2578193 |
| sint      | -.1644847 | .1746269 | -0.94 | 0.346| -.506747 to .1777777 |
| _cons     | -2.642403 | .2120549 | -12.46| 0.000| -3.058023 to -2.226783 |
Random intercepts model

<table>
<thead>
<tr>
<th></th>
<th>Delta-method</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Margin</td>
<td>Std. Err.</td>
<td>z</td>
<td>P&gt;</td>
<td>z</td>
</tr>
<tr>
<td>xerop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>.0709704</td>
<td>.0106353</td>
<td>6.67</td>
<td>0.000</td>
<td>.0501256</td>
</tr>
<tr>
<td>1</td>
<td>.1224475</td>
<td>.0496301</td>
<td>2.47</td>
<td>0.014</td>
<td>.0251743</td>
</tr>
</tbody>
</table>

LR test vs. logistic regression: chibar2(01) = 5.52 Prob>=chibar2 = 0.0094

Predictive margins Number of obs = 1200
Model VCE : OIM
Expression : Predicted mean, fixed portion only, predict(mu fixed)
Summary

• Exploratory analysis with binary outcomes is not straightforward
  ▶ Plots of raw data not always useful
  ▶ Aggregated percents (means) can summarize mean response
  ▶ Correlation can be examined using correlations or odds ratios

• GEE provides marginal, population-averaged contrasts
  ▶ Ratio of the expected odds of respiratory infection among a population of vitamin A deficient children to that for a population of children replete with vitamin A of the same age, gender, . . .

• GLMM provides conditional, subject-specific contrasts
  ▶ Ratio of the expected odds of respiratory infection for a typical individual with vitamin A deficiency to that for a typical individual with a sufficient amount of vitamin A of the same age, gender, . . .
  ▶ Random effects variance components quantify heterogeneity in effects

• Lack of significance likely due to small number of exposed cases
Overview

Review: Longitudinal data analysis

Case study: Longitudinal depression scores

Case study: Indonesian Children’s Health Study

Case study: Carpal tunnel syndrome

Summary and resources
Carpal tunnel syndrome trial

• Jarvik et al. (2009) compared surgical versus non-surgical treatment for carpal tunnel syndrome (CTS)

• 116 participants were randomized

• Outcomes were assessed using the CTS assessment questionnaire (CTSAQ), every 3 months for 12 months
  ▶ Primary: functional status (low values are favorable)
  ▶ Secondary: symptom severity

• Crossover to surgery was allowed after 3 months

• **Goal**: Determine whether surgery improves functional status
### Data (wide format)

```
. list ID idgroup treatassign surgical ctsaqf0 ctsaqf1 ctsaqf2 ctsaqf3 ctsaqf4

| | | | | | | | | | | | |
|---|----|---|---|---|---|---|---|---|---|---|--
| 1 | 11050 | 2 | 0 | 3 | 1.888889 | 1.666667 | 1.888889 | 1.333333 | 2.888889 |
| 2 | 11068 | 2 | 0 | 0 | 4 | 4.111111 | 4.222222 | 3.777778 | 4 |
| 3 | 11071 | 2 | 1 | 1 | 2 | 1.571429 | 1.222222 | 1 | 1 |
| 4 | 11078 | 2 | 0 | 0 | 1.375 | 1.5 | 2.125 | 2.5 | 2.333333 |
| 5 | 11086 | 2 | 1 | 1 | 3.222222 | 2.111111 | 1 | 1.777778 | 1 |
|---|----|---|---|---|---|---|---|---|---|--|
| 6 | 11087 | 2 | 1 | 1 | 2.555556 | 1.333333 | 1.555556 | 1.222222 | 1.222222 |
| 7 | 11098 | 2 | 0 | 4 | 2 | 1.555556 | 1.444444 | 1.333333 | 1 |
| 8 | 11117 | 2 | 1 | 1 | 2.875 | . | 2.888889 | . | 2 |
| 9 | 12001 | 4 | 1 | 1 | 3.125 | 2.75 | 3.25 | 2.75 | 2.75 |
| 10 | 12004 | 4 | 0 | 3 | 3.777778 | 4.333333 | 4.555555 | 3.333333 | 1.888889 |
|---|----|---|---|---|---|---|---|---|---|--|
| 11 | 12049 | 4 | 1 | 1 | 2 | 1 | 1 | 1 | 1.666667 |
| 12 | 12068 | 4 | 1 | 0 | 2.444444 | 3.333333 | 2.333333 | 2.333333 | 2.444444 |
| 13 | 12093 | 4 | 0 | 0 | 2.888889 | 4.222222 | . | 3.777778 | 4.222222 |
| 14 | 12143 | 4 | 1 | 1 | 2.888889 | 1.444444 | 1 | 1 | 1 |
| 15 | 12153 | 4 | 0 | 1 | 3 | 3.25 | . | . | 2.222222 |
|---|----|---|---|---|---|---|---|---|---|--|
| 16 | 12177 | 4 | 1 | 1 | 4.555555 | 3.777778 | . | . | . |
| 17 | 13001 | 3 | 1 | 0 | 2 | 1.222222 | 1.111111 | 1.333333 | 1 |
| 18 | 13002 | 3 | 1 | 1 | 2.333333 | 1.333333 | 1.444444 | 1 | 1 |
| 19 | 13005 | 3 | 0 | 1 | 1.888889 | 1.666667 | 1.777778 | 1.444444 | 1.555556 |
| 20 | 13006 | 3 | 1 | 1 | 3.111111 | 2.333333 | 1.777778 | 2 | 2 |
```

---more---
Variables

- **ID**: unique participant ID
- **idgroup**: study site
  (1 = private, 2 = UW, 3 = VA, 4 = HMC)
- **age**: age in years
- **gender**
  (0 = male, 1 = female)
- **treatassign**: randomized intervention
  (0 = non-surgery, 1 = surgery)
- **surgreported#**: surgery reported at visit #
  (0 = no, 1 = yes)
- **ctsaqf#**: CTSAQ functional status at visit #
- **ctsaqs#**: CTSAQ symptom severity at visit #
- **surgical**: treated surgically during study
  (0 = never, 1 = 0–3 mos, 2 = 3–6 mos, 3 = 6–9 mos, 4 = 9–12 mos)
Exploratory analyses

1. Plot individual trajectories in CTSAQF over time by treatment
2. Plot average CTSAQF over time by treatment
3. Summarize means, variances, and correlations over time by treatment
Regression analyses (intention-to-treat)

4. Evaluate POST, CHANGE, and ANCOVA models for each timepoint with CTSAQF as outcome
   - POST: follow-up measurement only
   - CHANGE: difference between follow-up and baseline measurement
   - ANCOVA: follow-up measurement controlling for baseline

5. Evaluate difference in mean CTSAQF between treatments at 12 months, adjusted for baseline CTSAQF and study site

6. Using repeated measures regression models, evaluate difference in mean CTSAQF between treatments using all timepoints, adjusted for baseline CTSAQF and study site
Bonus analyses (as treated)

7. Summarize actual treatment patterns by assigned treatment group

8. Plot average CTSAQF by visit...
   ▶ For those who received surgery by 3 months versus those who did not
   ▶ For those who received surgery by 9 months versus those who did not

9. Use linear mixed-effects models to estimate differences in mean CTSAQF when exposure is surgery by 3 months and surgery by 9 months instead of assigned treatment group
Answers
Individual trajectories, non-surgery arm

```
graph twoway connected ctsaqf visit if(ID<=13062 & ID!=13009 & treatassign==0),
by(ID) mcolor(maroon) lcolor(maroon) xtitle("Visit") ytitle("CTSAQ-F")
```
Individual trajectories, surgery arm

```
graph twoway connected ctsaqf visit if(ID<=13101 & ID!=13009 & treatassign==1),
 by(ID) mcolor(maroon) lcolor(maroon) xtitle("Visit") ytitle("CTSAQ-F")
```
Linear trajectories, non-surgery arm

```
graph twoway (lfit ctsaqf visit) (scatter ctsaqf visit)
 if(ID<=13062 & ID!=13009 & treatassign==0), by(ID, legend(off))
 xtitle("Visit") ytitle("CTSAQ-F")
```
Linear trajectories, surgery arm

```stata
graph twoway (lfit ctsaqf visit) (scatter ctsaqf visit)
 if (ID<=13101 & ID!=13009 & treatassign==1), by(ID, legend(off))
 xtitle("Visit") ytitle("CTSAQ-F")
```
Mean CTSAQF

collapse (mean) ctsaqf, by(visit treatassign)
graph twoway (scatter ctsaqf visit if treatassign==0) (line ctsaqf visit if treatassign==0)
   (scatter ctsaqf visit if treatassign==1) (line ctsaqf visit if treatassign==1)
Means and variances

```
. use "cts.dta", clear
. bysort treatassign: summarize ctsaqf0 ctsaqf1 ctsaqf2 ctsaqf3 ctsaqf4

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctsaqf0</td>
<td>59</td>
<td>2.526164</td>
<td>.8197035</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ctsaqf1</td>
<td>56</td>
<td>2.428075</td>
<td>.9304938</td>
<td>1.111111</td>
<td>4.444445</td>
</tr>
<tr>
<td>ctsaqf2</td>
<td>54</td>
<td>2.440586</td>
<td>.8689515</td>
<td>1.111111</td>
<td>4.555555</td>
</tr>
<tr>
<td>ctsaqf3</td>
<td>46</td>
<td>2.309136</td>
<td>.9266844</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ctsaqf4</td>
<td>52</td>
<td>2.169948</td>
<td>.9620186</td>
<td>1</td>
<td>4.222222</td>
</tr>
</tbody>
</table>

-> treatassign = 0

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctsaqf0</td>
<td>57</td>
<td>2.418616</td>
<td>.81565</td>
<td>1</td>
<td>4.555555</td>
</tr>
<tr>
<td>ctsaqf1</td>
<td>51</td>
<td>2.20347</td>
<td>.8369104</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ctsaqf2</td>
<td>50</td>
<td>1.911667</td>
<td>.8834815</td>
<td>1</td>
<td>4.111111</td>
</tr>
<tr>
<td>ctsaqf3</td>
<td>48</td>
<td>1.835069</td>
<td>.7985738</td>
<td>1</td>
<td>3.777778</td>
</tr>
<tr>
<td>ctsaqf4</td>
<td>49</td>
<td>1.740079</td>
<td>.789603</td>
<td>1</td>
<td>4.111111</td>
</tr>
</tbody>
</table>

-> treatassign = 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctsaqf0</td>
<td>57</td>
<td>2.418616</td>
<td>.81565</td>
<td>1</td>
<td>4.555555</td>
</tr>
<tr>
<td>ctsaqf1</td>
<td>51</td>
<td>2.20347</td>
<td>.8369104</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ctsaqf2</td>
<td>50</td>
<td>1.911667</td>
<td>.8834815</td>
<td>1</td>
<td>4.111111</td>
</tr>
<tr>
<td>ctsaqf3</td>
<td>48</td>
<td>1.835069</td>
<td>.7985738</td>
<td>1</td>
<td>3.777778</td>
</tr>
<tr>
<td>ctsaqf4</td>
<td>49</td>
<td>1.740079</td>
<td>.789603</td>
<td>1</td>
<td>4.111111</td>
</tr>
</tbody>
</table>
```

- Both treatment groups improve, but surgery group improves more
- Variance is larger in non-surgery group after baseline
- Missing data exist in both treatment groups
Correlation

```
.bysort treatassign: cor ctsaqf0 ctsaqf1 ctsaqf2 ctsaqf3 ctsaqf4
```

<table>
<thead>
<tr>
<th>treatassign = 0</th>
<th>ctsaqf0</th>
<th>ctsaqf1</th>
<th>ctsaqf2</th>
<th>ctsaqf3</th>
<th>ctsaqf4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctsaqf0</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ctsaqf1</td>
<td>0.7378</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ctsaqf2</td>
<td>0.7772</td>
<td>0.8564</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ctsaqf3</td>
<td>0.7209</td>
<td>0.6886</td>
<td>0.6161</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>ctsaqf4</td>
<td>0.5524</td>
<td>0.2956</td>
<td>0.3895</td>
<td>0.6302</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>treatassign = 1</th>
<th>ctsaqf0</th>
<th>ctsaqf1</th>
<th>ctsaqf2</th>
<th>ctsaqf3</th>
<th>ctsaqf4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctsaqf0</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ctsaqf1</td>
<td>0.4972</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ctsaqf2</td>
<td>0.4816</td>
<td>0.5598</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ctsaqf3</td>
<td>0.6316</td>
<td>0.5810</td>
<td>0.7144</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>ctsaqf4</td>
<td>0.4689</td>
<td>0.4148</td>
<td>0.6653</td>
<td>0.7948</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

- **Strong positive correlations across most measurement pairs**
- **Note**: Only a subset of participants has measurements at all times
Generate change variables

. use "cts.dta", clear

. gen change1 = ctsaqf1 - ctsaqf0
   (9 missing values generated)

. gen change2 = ctsaqf2 - ctsaqf0
   (12 missing values generated)

. gen change3 = ctsaqf3 - ctsaqf0
   (22 missing values generated)

. gen change4 = ctsaqf4 - ctsaqf0
   (15 missing values generated)
### POST results

```stata
. ttest ctsaqf1, by(treatassign) unequal

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>95% Conf. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>diff</td>
<td>0.2246051</td>
<td>0.1708647</td>
<td>-0.1141886</td>
<td>0.5633989</td>
</tr>
</tbody>
</table>

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9042 Pr(|T| > |t|) = 0.1915 Pr(T > t) = 0.0958

. ttest ctsaqf2, by(treatassign) unequal

| diff | 0.5289197 | 0.1720282 | 0.1876663 | 0.8701732 |

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9986 Pr(|T| > |t|) = 0.0027 Pr(T > t) = 0.0014

. ttest ctsaqf3, by(treatassign) unequal

| diff | 0.4740662 | 0.1787573 | 0.1188674 | 0.8292649 |

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9953 Pr(|T| > |t|) = 0.0095 Pr(T > t) = 0.0047

. ttest ctsaqf4, by(treatassign) unequal

| diff | 0.4298687 | 0.1747044 | 0.083138 | 0.7765995 |

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9922 Pr(|T| > |t|) = 0.0156 Pr(T > t) = 0.0078
```
### CHANGE results

```stata
.ttest change1, by(treatassign) unequal

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>diff</td>
<td>.1737167</td>
<td>.1352344</td>
<td>-.0944641</td>
<td>.4418975</td>
<td></td>
</tr>
</tbody>
</table>

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.8991 Pr(|T| > |t|) = 0.2018 Pr(T > t) = 0.1009

.ttest change2, by(treatassign) unequal

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>diff</td>
<td>.4199838</td>
<td>.1323821</td>
<td>.1571383</td>
<td>.6828293</td>
<td></td>
</tr>
</tbody>
</table>

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9990 Pr(|T| > |t|) = 0.0020 Pr(T > t) = 0.0010

.ttest change3, by(treatassign) unequal

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>diff</td>
<td>.4085163</td>
<td>.1300207</td>
<td>.1502486</td>
<td>.6667839</td>
<td></td>
</tr>
</tbody>
</table>

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9989 Pr(|T| > |t|) = 0.0023 Pr(T > t) = 0.0011

.ttest change4, by(treatassign) unequal

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>diff</td>
<td>.3499259</td>
<td>.1583154</td>
<td>.0357083</td>
<td>.6641434</td>
<td></td>
</tr>
</tbody>
</table>

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9853 Pr(|T| > |t|) = 0.0294 Pr(T > t) = 0.0147
```
## ANCOVA results

```
. reg ctsaqf1 treatassign ctsaqf0
--
| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
treatassign | -.1880334 .1280921 -1.47 0.145 -.4420449 .0659782
ctsaqf0 | .7186659 .0780039 9.21 0.000 .5639812 .8733505
 _cons | .6208691 .2151494 2.89 0.005 .1942197 1.047519
--
```

```
. reg ctsaqf2 treatassign ctsaqf0
--
treatassign | -.4477759 .1257977 -3.56 0.001 -.6973248 -.198227
ctsaqf0 | .744877 .0783514 9.51 0.000 .5894489 .9003051
 _cons | .5655304 .2155771 2.62 0.010 .1378835 .9931773
--
```

```
. reg ctsaqf3 treatassign ctsaqf0
--
treatassign | -.4234999 .1250043 -3.39 0.001 -.6718056 -.1751942
ctsaqf0 | .7714167 .078626 9.81 0.000 .6152359 .9275975
 _cons | .4320349 .2111155 2.05 0.044 .0126799 .8513899
--
```

```
. reg ctsaqf4 treatassign ctsaqf0
--
treatassign | -.3807795 .1485411 -2.56 0.012 -.6755546 -.0860045
ctsaqf0 | .6140536 .095983 6.40 0.000 .4235784 .8045289
 _cons | .6657885 .256818 2.59 0.011 .1561415 1.175435
--
```
Results for each timepoint

<table>
<thead>
<tr>
<th>Method</th>
<th>3 months Mean (SE)</th>
<th>6 months Mean (SE)</th>
<th>9 months Mean (SE)</th>
<th>12 months Mean (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POST</td>
<td>0.22 (0.17)</td>
<td>0.53 (0.17)</td>
<td>0.47 (0.18)</td>
<td>0.43 (0.17)</td>
</tr>
<tr>
<td>CHANGE</td>
<td>0.17 (0.14)</td>
<td>0.42 (0.13)</td>
<td>0.41 (0.13)</td>
<td>0.35 (0.16)</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>0.19 (0.13)</td>
<td>0.45 (0.13)</td>
<td>0.42 (0.13)</td>
<td>0.38 (0.15)</td>
</tr>
</tbody>
</table>

- Standard errors are lower when baseline information is incorporated into the model (CHANGE and ANCOVA)
- Estimated difference (control group minus surgical group) also varies across methods due to difference in baseline values
### CTSQAF at 12 months

```stata
.reg ctsaqf4 i.treatassign ctsaqf0 i.idgroup
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>28.9616934</td>
<td>5</td>
<td>5.79233869</td>
<td>F(5, 95) = 10.42</td>
</tr>
<tr>
<td>Residual</td>
<td>52.82623</td>
<td>95</td>
<td>.556065579</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>81.7879234</td>
<td>100</td>
<td>.817879234</td>
<td>Adj R-squared = 0.3201</td>
</tr>
</tbody>
</table>

| ctsaqf4    | Coef.  | Std. Err. | t    | P>|t|  | [95% Conf. Interval] |
|------------|--------|-----------|------|------|---------------------|
| 1.treatassign | -.4044936 | .1494477 | -2.71 | 0.008 | -.7011847 -.1078025 |
| ctsaqf0    | .5731743 | .0999908 | 5.73 | 0.000 | .3746674 .7716811  |

<table>
<thead>
<tr>
<th>idgroup</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.3308508</td>
<td>.2287227</td>
<td>1.45</td>
<td>0.151</td>
<td>-.1232212 .7849228</td>
</tr>
<tr>
<td>3</td>
<td>.2787628</td>
<td>.1904006</td>
<td>1.46</td>
<td>0.146</td>
<td>-.0992302 .6567559</td>
</tr>
<tr>
<td>4</td>
<td>.348587</td>
<td>.3311843</td>
<td>1.05</td>
<td>0.295</td>
<td>-.308897 1.006071</td>
</tr>
</tbody>
</table>

| _cons      | .5481683 | .2692172 | 2.04 | 0.045 | .0137046 1.082632 |

- Significant difference in adjusted mean CTSQAF at 12 months, indicating superiority of surgery
- Symptoms in both groups improved, but surgical treatment led to better outcome than did non-surgical treatment
- Clinical relevance of this difference was modest
GEE-independence

```
. xtset ID visit
. xtgee ctsaqf i.treatassign ctsaqfbase visit i.idgroup if visit!=0, corr(ind) robust

GEE population-averaged model
Number of obs = 406
Group variable: ID
Number of groups = 113
Link: identity
Obs per group:
Family: Gaussian
Correlation: independent
Correlation: (Std. Err. adjusted for clustering on ID)
Scale parameter:

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------------|----------|-----------|-------|------|---------------------|
| ctsaqf | -0.37514 | 0.091877 | -4.08 | 0.000 | -0.555213 -0.195062 |
| treatassign | | | | | |
| ctsaqfbase | 0.686364 | 0.051109 | 13.43 | 0.000 | 0.586193 0.786536 |
| visit | -0.09867 | 0.029451 | -3.35 | 0.001 | -0.156397 -0.040953 |
| idgroup | | | | | |
| 2 | 0.168626 | 0.141072 | 1.20 | 0.232 | -0.107895 0.445123 |
| 3 | 0.192081 | 0.098559 | 1.95 | 0.051 | -0.001092 0.385255 |
| 4 | 0.296514 | 0.301465 | 0.98 | 0.325 | -0.294346 0.887374 |
| _cons | 0.743999 | 0.163198 | 4.56 | 0.000 | 0.424136 1.063861 |
```

B French (Module 6)  Longitudinal Data Analysis  SISCR 2018  137 / 156
GEE-exchangeable

```
.xtgee ctsaqf i.treatassign ctsaqfbase visit i.idgroup if visit!=0, corr(exc) robust
```

GEE population-averaged model

<table>
<thead>
<tr>
<th></th>
<th>Number of obs = 406</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group variable:</td>
<td>ID Number of groups = 113</td>
</tr>
<tr>
<td>Link:</td>
<td>identity Obs per group:</td>
</tr>
<tr>
<td>Family:</td>
<td>Gaussian min = 1</td>
</tr>
<tr>
<td>Correlation:</td>
<td>exchangeable avg = 3.6</td>
</tr>
<tr>
<td></td>
<td>max = 4 Wald chi2(6) = 288.18</td>
</tr>
<tr>
<td>Scale parameter:</td>
<td>.4278235 Prob &gt; chi2 = 0.0000</td>
</tr>
</tbody>
</table>

(Std. Err. adjusted for clustering on ID)

|                  | Coef.  | Std. Err. | z      | P>|z|  | [95% Conf. Interval] |
|------------------|--------|-----------|--------|------|----------------------|
| ctsaqf           | -.3822556 | .0940684 | -4.06 | 0.000 | -.5666262 -.197885 |
| ctsaqfbase       | .6973972  | .051547  | 13.53 | 0.000 | .5963669 .7984275 |
| visit            | -.099509  | .0294018 | -3.38 | 0.001 | -.1571355 -.0418825 |
| idgroup          | .2219611  | .1469105 | 1.51  | 0.131 | -.0659783 .5099004 |
| idgroup          | .1999074  | .0996394 | 2.01  | 0.045 | .0046177 .3951971 |
| idgroup          | .3226388  | .2931943 | 1.10  | 0.271 | -.2520116 .8972891 |
| _cons            | .7186626  | .1665791 | 4.31  | 0.000 | .3921736 1.045152 |

Estimated correlation for exchangeable structure: 0.35
Choices for random effects

**Recall**: \( G \) quantifies random variation in trajectories across subjects

\[
G = \begin{bmatrix}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{bmatrix}
\]

- \( \sqrt{G_{11}} \) is the typical deviation in the **level** of the response
- \( \sqrt{G_{22}} \) is the typical deviation in the **change** in the response
- \( G_{12} \) is the covariance between subject-specific intercepts and slopes
  - \( G_{12} = 0 \) indicates subject-specific intercepts and slopes are uncorrelated
  - \( G_{12} > 0 \) indicates subjects with **high level** have **high rate** of change
  - \( G_{12} < 0 \) indicates subjects with **high level** have **low rate** of change

\((G_{12} = G_{21})\)
Random intercepts model

```
.xtmixed ctsaqf i.treatassign ctsaqfbase visit i.idgroup if visit!=0 || ID:, reml

Mixed-effects REML regression
Group variable: ID
Number of obs = 406
Number of groups = 113

 ctsaqf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+---
 1.treatassign | -.383107 .0962250 -3.98 0.000 -.5717041 -.1945095
 ctsaqfbase | .698073 .0614936 11.35 0.000 .5775476 .8185981
 visit | -.099707 .0231624 -4.30 0.000 -.1451047 -.0543096
 idgroup |
 2 | .227111 .1480185 1.53 0.125 -.0630001 .5172217
 3 | .200227 .1174353 1.71 0.088 -.0299416 .4303964
 4 | .324382 .2130353 1.52 0.128 -.0931598 .7419230
 _cons | .717490 .1815144 3.95 0.000 .3617286 1.073252

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+---
 ID: Identity
 sd(_cons) | .421169 .0430936 .3446376 .5146958
 sd(Residual) | .518840 .0215722 .4782366 .5628917

LR test vs. linear model: chibar2(01) = 63.35 Prob >= chibar2 = 0.0000
```
Random intercepts and slopes model (correlated)

```
. xtmixed ctsaqf i.treatassign ctsaqfbase visit i.idgroup if visit!=0 || ID: visit, cov(unstruct) reml

Mixed-effects REML regression
Group variable: ID
Number of obs = 406
Number of groups = 113

 ctsaqf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+--
 1.treatassign | -.3702775 .096159 -3.85 0.000 -.5587457 -.1818093
 ctsaqfbase | .7060563 .0614011 11.50 0.000 .5857124 .8264003
 visit | -.0956556 .0293802 -3.26 0.001 -.1532398 -.0380714
 idgroup |
 2 | .2170309 .1484137 1.46 0.144 -.0738545 .5079163
 3 | .194662 .1171352 1.66 0.097 -.0349188 .4242429
 4 | .3281545 .2119597 1.55 0.122 -.0872788 .7435878
 _cons | .6883726 .1853725 3.71 0.000 .3250493 1.051696

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+-------------------------------------
 ID: Unstructured
 sd(visit) | .2316608 .0287761 .1816014 .2955194
 sd(_cons) | .6866493 .0779129 .5497315 .8576683
 corr(visit,_cons) | -.7612501 .0630968 -.8599827 -.6075849
 sd(Residual) | .423334 .021786 .3827171 .4682614

LR test vs. linear model: chi2(3) = 91.95 Prob > chi2 = 0.0000
```
Treatment

. tab treatassign

<table>
<thead>
<tr>
<th>treatassign</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>59</td>
<td>50.86</td>
<td>50.86</td>
</tr>
<tr>
<td>1</td>
<td>57</td>
<td>49.14</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Total | 116   | 100.00  |

. tab treatassign surgical

<table>
<thead>
<tr>
<th>treatassign</th>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>36</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>59</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>42</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>57</td>
</tr>
</tbody>
</table>

Total | 49 | 45 | 5  | 12 | 5  | 5   | 116   |

- Of 57 assigned to surgery, 42 had it by 3 months and 13 never had it
- Of 59 assigned to no surgery, 23 actually had surgery during the study
Treatment

. gen surgby3 = (surgical==1)
. gen surgby9 = (surgical==1 | surgical==2 | surgical==3)
. collapse (mean) surgby3 surgby9 treatassign, by(ID)
. tab treatassign surgby3, row

<table>
<thead>
<tr>
<th>treatassign</th>
<th>(mean) surgby3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0</td>
</tr>
<tr>
<td>------------+----------------------+----------</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>94.92</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>26.32</td>
</tr>
<tr>
<td>Total</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>61.21</td>
</tr>
</tbody>
</table>

. tab treatassign surgby9, row

<table>
<thead>
<tr>
<th>treatassign</th>
<th>(mean) surgby9</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0</td>
</tr>
<tr>
<td>------------+----------------------+----------</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>69.49</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>22.81</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>46.55</td>
</tr>
</tbody>
</table>
Mean CTSQAF, 3-month exposure

collapse (mean) ctqaqf, by(visit surgby3)
graph twoway (scatter ctqaqf visit if surgby3==0) (line ctqaqf visit if surgby3==0)
  (scatter ctqaqf visit if surgby3==1) (line ctqaqf visit if surgby3==1)
Mean CTSQAF, 9-month exposure

collapse (mean) ctsaqf, by(visit surgby9)
graph twoway (scatter ctsaqf visit if treatassign==0) (line ctsaqf visit if treatassign==0)
(scatter ctsaqf visit if treatassign==1) (line ctsaqf visit if treatassign==1)
Random intercepts model, 3-month exposure

```
.xtmixed ctsaqf i.surgby3 ctsaqfbase visit i.idgroup if visit!=0 || ID:, reml

Mixed-effects REML regression
Group variable: ID
Number of obs = 406
Number of groups = 113

--
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
ctsaqf | .6944563 .0606965 11.44 0.000 .5754934 .8134193
1.surgby3 | -.4252701 .097025 -4.38 0.000 -.6154357 -.2351046
ctsaqfbase | .6944563 .0606965 11.44 0.000 .5754934 .8134193
visit | -.0989045 .0231576 -4.27 0.000 -.1442927 -.0535164
| idgroup |
2 | .1713365 .1456117 1.18 0.239 -.1140571 .4567301
3 | .1564175 .115641 1.35 0.176 -.0702348 .3830697
4 | .3226843 .2099699 1.54 0.124 -.0888493 .7342178
| _cons | .7412677 .1797044 4.12 0.000 .3890536 1.093482
--

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+--
ID: Identity
| sd(_cons) | .4129955 .0427566 .3371492 .5059043
-----------------------------+--
| sd(Residual) | .5188236 .0215635 .4782355 .5628565
--

LR test vs. linear model: chibar2(01) = 60.72 Prob >= chibar2 = 0.0000
```
Random intercepts model, 9-month exposure

```
.xtmixed ctsaqf i.surgby9 ctsaqfbase visit i.idgroup if visit!=0 || ID:, reml
```

Mixed-effects REML regression

Number of obs = 406
Group variable: ID
Number of groups = 113

|         | Coef.    | Std. Err. | z     | P>|z| | [95% Conf. Interval] |
|---------|----------|-----------|-------|-----|---------------------|
| ctsaqf  |          |           |       |     |                     |
| 1.surgby9 | -.3513861 | .0983809  | -3.57 | 0.000 | -.5442091 to -.1585631 |
| ctsaqfbase | .7060697  | .0623307  | 11.33 | 0.000 | .5839037 to .8282357  |
| visit   | -.0992214 | .0231492  | -4.29 | 0.000 | -.1445929 to -.0538499 |
|         |          |           |       |     |                     |
| idgroup |          |           |       |     |                     |
| 2       | .186283   | .1498146  | 1.24  | 0.214 | -.1073482 to .4799142 |
| 3       | .1426917  | .1192819  | 1.20  | 0.232 | -.0910964 to .3764798 |
| 4       | .2899892  | .2155455  | 1.35  | 0.179 | -.1324721 to .7124506 |
|         |          |           |       |     |                     |
| _cons   | .7454116  | .1879631  | 3.97  | 0.000 | .3770107 to 1.113813  |

Random-effects Parameters

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID: Identity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd(_cons)</td>
<td>.4305422</td>
<td>.0432033</td>
<td>.3536722 to .5241198</td>
</tr>
<tr>
<td>sd(Residual)</td>
<td>.5183685</td>
<td>.0215202</td>
<td>.4778601 to .5623109</td>
</tr>
</tbody>
</table>

LR test vs. linear model: chibar2(01) = 68.16    Prob >= chibar2 = 0.0000
Summary

• Small but statistically significant difference between groups, showing an improvement due to surgical treatment
• Analyses focused on average ‘cross-sectional’ differences; could also explore differences in trends between groups
• Consistent results across analyses, even though different methods require different assumptions, particularly regarding missing data
• Reasonable people disagree about how to include baseline measurements in repeated measures regression models. . .
  ▶ As a covariate (as was done here)
  ▶ As an outcome
• Intention-to-treat estimate possibly understated due to crossovers; as-treated analyses are subject to possible selection biases
Overview

Review: Longitudinal data analysis

Case study: Longitudinal depression scores

Case study: Indonesian Children’s Health Study

Case study: Carpal tunnel syndrome

Summary and resources
Big picture: GEE

- Marginal mean regression model
- Model for longitudinal correlation
- Semi-parametric model: mean + correlation
- Form an unbiased estimating function
- Estimates obtained as solution to estimating equation
- Model-based or empirical variance estimator
- Robust to correlation model mis-specification
- Large sample: \( n \geq 40 \)
- Testing with Wald tests
- Marginal or population-averaged inference
- Efficiency of non-independence correlation structures
- Missing completely at random (MCAR)
- Time-dependent covariates and endogeneity
- Only one source of positive or negative correlation
- R package geepack; Stata command xtgee
Big picture: GLMM

- Conditional mean regression model
- Model for population heterogeneity
- Subject-specific random effects induce a correlation structure
- Fully parametric model based on exponential family density
- Estimates obtained from likelihood function
- Conditional (fixed effects) and maximum (random effects) likelihood
- Approximation or numerical integration to integrate out $\gamma$
- Requires correct parametric model specification
- Testing with likelihood ratio and Wald tests
- Conditional or subject-specific inference
- Induced marginal mean structure and ‘attenuation’
- Missing at random (MAR)
- Time-dependent covariates and endogeneity
- Multiple sources of positive correlation
- R package lme4; Stata commands mixed, melogit
Final summary

Generalized estimating equations

- Provide valid estimates and standard errors for regression parameters of interest even if the correlation model is incorrectly specified (+)
- Empirical variance estimator requires sufficiently large sample size (−)
- Always provide population-averaged inference regardless of the outcome distribution; ignores subject-level heterogeneity (+/−)
- Accommodate only one source of correlation (−/+)
- Require that any missing data are missing completely at random (−)
Final summary

Generalized linear mixed-effects models

- Provide valid estimates and standard errors for regression parameters only under stringent model assumptions that must be verified (−)
- Provide population-averaged or subject-specific inference depending on the outcome distribution and specified random effects (+/−)
- Accommodate multiple sources of correlation (+/−)
- Require that any missing data are missing at random (−/+)

Advice

- Analysis of longitudinal data is often complex and difficult
- You now have versatile methods of analysis at your disposal
- Each of the methods you have learned has strengths and weaknesses
- Do not be afraid to apply different methods as appropriate
- Statistical modeling should be informed by exploratory analyses
- Always be mindful of the scientific question(s) of interest
Resources

Introductory


Advanced

Thank you!