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Review: Cox Regression Model

e Introduction

> Cox (1972)
e Model

> hazard model

> log hazard, survival models
> PH assumption

> Interpretation of coefficients

> Specific examples
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Cox Regression Model

e Estimation
> Coefficients
> Partial likelihood
> Approximation for ties
> Survival curve(s)

> Hazard curve(s)

e Stratification
> Using covariate

> Using “true” stratification
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Cox (1972)

D.R. Cox (1972) “Regression Models and Life-Tables"
(with discussion) JRSS-B, 74: 187-220.

“The present paper is largely concerned with the extension of the

results of Kaplan and Meier to the comparison of life tables and

more generally to the incorporation of regression-like arguments

into life-table analysis.” (p. 187)

Model proposed:

A(t [ X) = Ao(t) - exp(X )

“In the present paper we shall, however, concentrate on exploring

the consequence of allowing \g(t) to be arbitrary, main interest

being in the regression parameters.” (p. 190)

“A Conditional Likelihood” — later called Partial Likelihood.

Score Test = LogRank Test
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Discussion:

> “Mr. Richard Peto (Oxford University): | have greatly enjoyed
Professor Cox's paper. It seems to me to formulate and to
solve the problem of regression of prognosis on other factors
perfectly, and it is very pretty.”

Impact:

> Science Citation Index: 29,140 citations (29 June 2015)
> David R. Cox is knighted in 1985 in recognition of his scientific

contributions.
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Sir David R. Cox
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Cox Regression Model

Response Variable:
> Observed: (Y;,6;)
> Of Interest: T;, or A(t)

T; survival, with distribution given by:
> Survival function: S(t)

> Hazard function: A(t)

Observed Covariates: | X1, Xo,..., Xk
> For subject j we observe: (Y};,4,), X1;, Xoj,..., Xk;

IDEA: same as with other regression models — Model relates the
covariates X1,..., X to the distribution (either S(t) or A(t)) of
the response variable of interest, T
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Cox Regression Model

e | Model:

)\(t ‘ Xl,XQ, ce ,Xk) — Ao(t) -exp(ﬁle +/82X2 + ... —I—ﬁka)

e | Model: |alternatively expressed as

log A\(t | X1,...,Xg) = logA(t) + B1 X1+ foXo+ ...+ Br Xy

S(t | X1,..., X) (S ()] [XP P X182 Xat o5 X00)]

e Note definitions:
> Ao(t):)\(t|X1:O,XQZO,...,Xk:O)
> SO(t)ZS(t|X1:O,XQZO,...,Xk:O)
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Interpreting Cox Regression Coefficients

e | Proportional Hazards:

)\(t ‘ X17X27"'7Xk)
N X1 =0 X5=0,.... X5 = 0)

RR =

= exp(f1 X1 + P2 Xo + ...+ B Xk)

e RR above is: “Relative risk, or hazard, of death comparing subjects
with covariate values (X1, Xo,..., Xx) to subjects with covariate

values (0,0,...,0)."
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Interpreting Cox Regression Coefficients

In General:

> B is the log RR (or log hazard ratio, log HR) comparing
subjects with X,,, = (z + 1) to subjects with X, = x, given
that all other covariates are constant (ie. the same for the
groups compared).

here
At X1, X = (@ +1) ..., X))
At X1 X = (), X))
here
Ao(t)exp(B1Xy+ ... Bm(z+ 1)+ ... + B Xy) exp(Bon)
Ao(t)exp(B1 X1+ ... Bm(z) + ...+ Bp Xi) "
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Interpreting Cox Regression Coefficients

The RR Comparing 2 Covariate Values (vectors):

> RR comparing (X1, Xo,...,Xx) to (X1, X5,...,X}).

)\(t | X17X27°"7Xk)

RR(X vs. X') At X, X, X))
= exp| f1- (X1 —X])+
B2+ (Xa — X3) +
.+
Br - (X — X3) |
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Cox Model Examples

e |1:| One dichotomous covariate

> Xg =1 if exposed; Xg = 0 if not exposed.
> At | Xg) = Ao(t) exp(BXE)
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Cox Model Examples

2:

Dichotomous covariate; Dichotomous confounder

> Xo =1iflevel 2; X = 0 if level 1.
> A | XE, Xc) = Ao(t) exp(B1XE + 52X ¢)
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Cox Model Examples

e | 3: | Dichotomous covariate; confounder; (interaction)

>  With interaction
> Mt | Xg, Xeo) = Xo(t) exp(B1XE + 52X + B3 XeXo)
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Cox Models: Comments

In each example the hazard functions are “parallel” — that is, the
change in hazard over time was the same for each covariate value.

For regression models there are different possible tests for a
hypothesis about coefficients: likelihood ratio; score; Wald. (more
later!)

The score test for example (1) with Hy : 8 = 0 is the LogRank
Test.

The score test using “dummy variables” to code (4) groups with
Hy : By = B3 = B4 = 0 is the same as the K-sample Heterogeneity
test (generalization of LogRank).
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Fitting the Cox Model

e Obtain estimates of (31, 32, ..., 0 by maximizing the “partial
likelihood” function:

P’C(517627 SR 7Bk)

> By, Bs,.... B are MPLE's
> Cl's for 8, using:
Bj + Z1_o/2SE(B;).
> Cl's for hazard ratio (HR) using:
exp|B;—Z1-a/25E(B))], explBj+Z1—a/2SE(B))]
> Wald test, score test, and likelihood ratio test similar to
logistic regression. Now using the partial likelihood.
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Partial Likelihood

o Model: )\(t | Xl,...,Xk) :)\Q(t) exp(61X1—|——|—6ka)

e | Order Data:

> t(;) is the ith ordered failure time.

> Assume no ties, and let X(i) —= (Xl(i), X2(z’)7 e 7Xk(z')) be the
covariates for the subject who dies at time % ;).

> Let R; denote the “risk set” at time ¢(;), which denotes all
subjects with Y; > ;.

e Partial Likelihood: (no ties)

(8 H exp(B1 X1y + B2 Xo@) + ...+ ﬁka(i))
T deR exp(f1X1; + 52X23 -+ BrXkj)
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Risk Set lllustration

Subject

D=death, L=lost, A=alive
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Risk Set lllustration

e Failure times: t(l) = 1,t(2) = 3,75(3) = 4,t(4) = 6.

e Risk sets:
> Ry = }
> R ={ }
> Rz ={ }
> Ry =1 }
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Partial Likelihood — Justification

Cox (1972) — “No information can be contributed about 3 by time
intervals in which no failures occur because the component \y(t)

might conceivably be identically zero in such intervals.”

Cox (1972) — “We therefore argue conditionally on the set {#;}
of instants at which failure occur.”

Cox (1972) — “For the particular failure at time t(;) conditional on
the risk set, ‘R;, the probability that the failure is on the individual
as observed is:

Note:

exp(P1X1(iy + B2Xo@) + -+ + BuXi(s))
ZjeRi exp(B1 X1, + PoXo; + ...+ BuXk;)

This likelihood contribution has the exact same form as

a (matched) logistic regression conditional likelihood.
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Partial Likelihood — Justification

e Q: What is the probability of the observed data at time t(;) given
that one person was observed to die among the risk set?

Note : PlT e (t,t+At]|T >t~ A(t)- At

Person who died :  Ao(?) exp(B81 X1y + ... + BruXpu)) At = P

Generic JInR; )\O(t) exp(ﬁlej + ...+ 5kaj)At = Pj
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Partial Likelihood — Justification

Probability One Death, Was (¢) :

P(z) X (1 —Pl) X (1—P2)

Probability of One Death:

P( One Death ) =

P( 7 died, others lived ) =

Note: | (1 — P;) ~ 1 for small At.

.. X skip(i) x (1 — Py)

P( 1 died, others lived ) +
P( 2 died, others lived ) +

coF
P( k died, others lived )
Pyx ] - P

kg
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Partial Likelihood — Justification

e Now calculate the desired quantity:

P( Only (i) Dies )

P( One Death )

Py ey (1 — Pr)
ZjERi P Hk;ﬁj(l _ Pk)

P( Observed Data | 1 death )

. 1
Pl _ Mo(t) exp(B1 X1z + BaXogy + ..o+ B Xyy) - At
ZjGRi P ZjER,L- )‘O(t) eXp(Blej + 52X2j + ...+ Bkaj) - At

exp(B1 X1y + B2Xow) + - -+ BeXiw))
2 jer, XP(P1X1j + B2 X5 + ..+ BrXy;)
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Partial Likelihood — Comments

Notice that our model is equivalent to
where a(t) = log Ag(t), but the PL does not depend on «(t).

Using the partial likelihood (PL) to estimate parameters provides
estimates of the regression coefficients, 3;, only.

The model is called “semi-parametric” since we only need to
parameterize the effect of covariates, and do not say anything
about the baseline hazard.

Q: Why not just use standard maximum likelihood?

A: To do so would require choosing a model for the baseline
hazard, but we actually don't need to do that!
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Partial Likelihood and Ties

e |If there is more than one death at time ;) then the denominator
for the partial likelihood contribution will involve a large number
of terms. For example if there are 20 people at risk at time ;)
and 3 die then there are “20 choose 3" = 1140 terms.

e | Approximation | (Breslow, Peto) default in STATA

> The numerator can be calculated and represented using:
Sum X, for deaths: s; = ijyj:t(i),aj:l X1
Sum X5 for deaths: s9; = Zj%:t(i)’(sjzl Xo; etc.

> The approximation with D; deaths at time ;) Is:

PL, = ﬁ exp(B151i + P2S2; + - .- + BrSki)

D;
i=1 [Zjem exp(f1X1; + P2 Xoj + ... + 5/<ij)}
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Comments on Ties

e If continuous times, 7}, then ties should not be an issue.

> Time recorded in (days,minutes).

> Modest sample size.

e If discrete times, T; € [tg,tx11), recorded then consider methods
appropriate for discrete-time data (e.g. variants on logistic regression)

> See Singer & Willett (2003) chpts 10-12; H& L pp. 268-9.
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Comments on Ties

e However, there is plenty of room between continuous and discrete.

> | Example:

USRDS Data = 200,000 subjects.

25% annual mortality = 50,000 deaths/year.
50,000 deaths/365 days = 137 deaths/day.

e Kalbfleisch & Prentice (2002), section 4.2.3 summarize options and
relative pros/cons.

> “Breslow method” — simple to implement/justify; some bias if

discrete.

> “Efron method” — also simple comp; performs well.

> ‘“exact method” — justified; comp challenge.

> Should be minor issue in general, and if not then perhaps a
discrete-time approach should be considered.

25-2
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(Partial) Likelihood Ratio Tests

Full Model:

)\(t|X) = )\0(15) exp(ﬁle + ...+ 5po —+ \Bp—l—lXp—i—l 4+ ... 5lei)

extra

Reduced Model:

)\(t|X) = )\0(15) exp(ﬁle + ...+ ﬁpo)

In order to test:
> Hp: Reduced model & Hy:fBpp1=...=08,=0

> Hy : Full model & Hy @ extra coeff #= 0 somewhere

Use the partial likelihood ratio statistic

X%, » = [2log PL(FullModel) — 2log PL(ReducedModel)]
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(Partial) Likelihood Ratio Tests

Under Hy (reduced is correct) then X%, ~ x*(df = (k — p))

Degrees of freedom, df = (k — p), equals the number of
parameters set to 0 by the null hypothesis.

Application is for situations where the models are “nested” — the
reduced model is a special case of the full model.

Also can use Wald tests, and/or score tests. The PLR (Partial
Likelihood Ratio) test is particularly useful when df> 1.

The PLR statistic is equivalent (using a “double negative”) to:

X% p = {[-2log PL(ReducedModel)] — [—2log PL(FullModel)]}
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Example of Cox Regression — Primary Billiary
Cirrhosis (PBC)

Data:

> A randomized trial with n = 312 subjects.

> Long-term follow-up (10 years!)

Objective:

> Could the available clinical information be used to construct a

predictive model that could be used to guide medical decisions?
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Example Analysis using R — PBC

pbc.data <- read.table( "pbc-data.txt", header=T )
#

pbc.data$survival.time <- pbc.data$fudays
pbc.data$survival.status <- as.integer( pbc.data$status==2 )
#

HH###

library(survival)

H#H#HH#

#

##### Kaplan-Meier curve

#

Sout <- survfit( Surv(survival.time,survival.status) ~ 1, data=pbc.data

plot( Sout, mark.time=F, col="blue", xlab="Time (days)", ylab="Survival"
lwd=2 )
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PBC Data

Survival

0.0

Kaplan—Meier Estimate of Survival

1000

2000 3000

Time (days)

4000

Biomarkers



31

Example of Cox Regression — PBC

###### Cox model with log(bili), log(protime), edema, albumin, age
###### generate linear predictor for ordinary cox model: etab
#
fit <- coxph( Surv(survival.time,survival.status) ~ log(bili) +
log(protime) +
edema +
albumin +
age,
data=pbc.data )
summary ( fit )
#
#H#### get the risk score
#

etab <- fit$linear.predictors
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Example of Cox Regression — PBC

n= 312, number of events= 125

coef
log(bili) 8.773e-01
log(protime) 3.013e+00
edema 7.846e-01
albumin -9.445e-01
age 9.169e-05

exp (coef)
2.404e+00
2.035e+01
2.192e+00
3.889e-01
1.000e+00

N N N —~ O©

Rsquare= 0.471 (max possible= 0.983

Likelihood ratio test= 198.5

32

se(coef) z Pr(>lzl)

.895e-02 8.866 < 2e-16 **x
.025e+00 2.939 0.003296 *x*
.998e-01 2.617 0.008872 **
.370e-01 -3.985 6.73e-05 **x
.363e-05 3.881 0.000104 *x*x

)

on 5 df, p=0
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Example of Cox Regression — PBC

KM Estimates by Model(5) Tertiles
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Example of Cox Regression — PBC

##### generate linear predictor for ordinary cox model: etad

#

#

fit <- coxph( Surv(survival.time,survival.status)
edema +
albumin +
age,

data=pbc.data )

summary( fit )

#

# get the risk score

#

eta4 <- fit$linear.predictors

~ log(protime) +
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Example of Cox Regression — PBC

n= 312, number of events= 125

coef
log(protime) 4.140e+00
edema 1.190e+00
albumin -1.314e+00
age 6.689e-05

exp (coef)
6.283e+01
3.288e+00
2.687e-01
1.000e+00

se(coef) z Pr(>|zl)
8.703e-01 4.758 1.96e-06 **x*
2.953e-01 4.031 5.56e-05 **x
2.228e-01 -5.897 3.71e-09 *x*x
2.515e-05 2.660 0.00782 *x*

Rsquare= 0.32 (max possible= 0.983 )

Likelihood ratio test= 120.5

35

on 4 df, p=0
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Example of Cox Regression — PBC

Survival

36

KM Estimates by Model(4) Tertiles
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Example of Cox Regression — PBC

Compare eta5 and etad
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Summary

Cox regression is semi-parametric (and popular!)

Covariates can be modeled in standard ways and inference
performed using partial likelihood, score, and Wald tests.

An important idea is the risk set at time ¢ which usually includes

a single CASE and multiple CONTROLS (at that time).
Q: How well does the predictive model perform?

Q: How to link the model to making medical decisions?
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