BIOSTAT 555/EPI 555/GH 534: Statistical Methods for Spatial Epidemiology

3 credits, graded
Jon Wakefield

Times:

Monday 1.30-2.50 in HST T531
Wednesday 1.30-2.50 in HST T739

Course Information (https://canvas.uw.edu/courses/1353441/pages/course-information)
Instructor Information (https://canvas.uw.edu/courses/1353441/pages/instructor-information)
R References (https://canvas.uw.edu/courses/1353441/pages/r-references)
Literature (https://canvas.uw.edu/courses/1353441/pages/literature)
Course Project Resources (https://canvas.uw.edu/courses/1353441/pages/course-project)
Course Information

This course motivates the need for, and describes methods for, the analysis of spatially indexed epidemiological data. Major topics to be covered: clustering and cluster detection, disease mapping, spatial regression, methods for infectious disease data, small area estimation and an introduction to geographical information systems. Both point-references and spatially aggregated data will be considered. The use of R packages for analysis will be described.

Syllabus

The availability of geographically indexed health, population and exposure data, and advances in computing, geographic information systems, and statistical methodology, have enabled the realistic investigation of spatial variation in disease risk. Each of the population, exposure and health data may have associated exact spatial and temporal information (point data), or be available as aggregated summaries (count data). The following specific topics, with analysis methods listed for each, will be covered:

Clustering and cluster detection:
- Autocorrelation statistics.
- K-functions.
- Scan statistics including the use of the SatScan package.

Disease mapping:
- Geostatistical smoothing models for point data, including prevalence mapping.
- Kernel density estimation.
- Conditional and joint models for areal (aggregate) data.
- Extension to space-time analysis.

Spatial regression:
- Problems with conventional analyses.
- Methods for acknowledgement of residual spatial dependence.

Methods for infectious disease data:
- SIR and related models
- Approximate and exact inference procedures.

Small area estimation (domain estimation)
Bayesian model-based approaches
Incorporation of design weights.
GIS:
- Background to GIS.
- How to draw maps in R.

Reading List:


Pre-requisites:
Previous exposure to regression modeling, some familiarity with log-linear or logistic modeling is desirable.

Learning Objectives:
At the end of the course the student will be able to describe the need for specialized methods for the analysis of spatial data, distinguish between different types of spatial data, and choose an appropriate analysis method.

Religious Accommodations Policy
“Washington state law requires that UW develop a policy for accommodation of student absences or significant hardship due to reasons of faith or conscience, or for organized religious activities. The UW's policy, including more information about how to request an accommodation, is available at Religious Accommodations Policy (https://registrar.washington.edu/staffandfaculty/religious-accommodations-policy/) . Accommodations must be requested within the first two weeks of this course using the Religious Accommodations Request form (https://registrar.washington.edu/students/religious-accommodations-request/) .”